On actions of reductive groups with one-parameter family
Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 639-655 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Actions of reductive groups on normal algebraic varieties with one-parameter families of spherical orbits of maximal dimension are studied under the assumption that the categorical quotient for the action is one-dimensional. As an application, the classification of the actions of the group $SL_2$ on three-dimensional normal affine varieties is completed. The ground field $K$ is assumed to be algebraically closed and of characteristic zero.
@article{SM_1997_188_5_a0,
     author = {I. V. Arzhantsev},
     title = {On actions of reductive groups with one-parameter family},
     journal = {Sbornik. Mathematics},
     pages = {639--655},
     year = {1997},
     volume = {188},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_5_a0/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
TI  - On actions of reductive groups with one-parameter family
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 639
EP  - 655
VL  - 188
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_5_a0/
LA  - en
ID  - SM_1997_188_5_a0
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%T On actions of reductive groups with one-parameter family
%J Sbornik. Mathematics
%D 1997
%P 639-655
%V 188
%N 5
%U http://geodesic.mathdoc.fr/item/SM_1997_188_5_a0/
%G en
%F SM_1997_188_5_a0
I. V. Arzhantsev. On actions of reductive groups with one-parameter family. Sbornik. Mathematics, Tome 188 (1997) no. 5, pp. 639-655. http://geodesic.mathdoc.fr/item/SM_1997_188_5_a0/

[1] Vinberg E. B., “Slozhnost deistvii reduktivnykh grupp”, Funk. analiz i ego pril., 20:1 (1986), 1–13 | MR | Zbl

[2] Arzhantsev I. V., “O deistviyakh slozhnosti odin gruppy $\mathrm{SL}_2$”, Izv. RAN. Ser. matem., 61:4 (1997), 3–18 | MR | Zbl

[3] Kraft Kh., Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl

[4] Popov V. L., “Kvaziodnorodnye affinnye algebraicheskie mnogoobraziya gruppy $SL(2)$”, Izv. AN SSSR. Ser. matem., 37:4 (1973), 792–832 | MR | Zbl

[5] Kempf G., Knudson F., Mumford D., Saint-Donat B., Toroidal embeddings, Lecture Notes in Math., 337, 1973

[6] Timashev D. A., “$G$-mnogoobraziya slozhnosti odin”, UMN, 51:3 (1996), 213–214 | MR | Zbl

[7] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napravleniya, 55, VINITI, M., 1989, 137–314 | MR

[8] Khamfri Dzh., Lineinye algebraicheskie gruppy, Nauka, M., 1980 | MR

[9] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[10] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1988 | MR

[11] Popov V. L., “Styagivanie deistvii reduktivnykh algebraicheskikh grupp”, Matem. sb., 130 (172):3 (7) (1986), 310–334 | MR | Zbl

[12] Knop F., “The Luna–Vust Theory of Spherical Embeddings”, Proc. of the Hyderabad Conf. on Algebraic Groups, Manoj Prakashan, Madras, 1991, 225–249 | MR | Zbl

[13] Knop F., “The Asymptotic behavior of the invariant collective motion”, Invent. Math., 116 (1994), 309–328 | DOI | MR | Zbl

[14] Bialynicki-Birula A., Swiecicka J., “Good Quotients for Actions of $SL(2)$”, Bull. Polish Acad. Sci. Math., 36 (1988), 375–381 | MR | Zbl

[15] Orlik P., Seifert manifolds, Lecture Notes in Math., 291, 1972 | MR | Zbl