@article{SM_1997_188_4_a3,
author = {M. A. Ol'shanskii},
title = {On the {Stokes} problem with model boundary conditions},
journal = {Sbornik. Mathematics},
pages = {603--620},
year = {1997},
volume = {188},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_4_a3/}
}
M. A. Ol'shanskii. On the Stokes problem with model boundary conditions. Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 603-620. http://geodesic.mathdoc.fr/item/SM_1997_188_4_a3/
[1] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl
[2] Gresho P. M., Sani R. L., “On pressure boundary conditions for incompressible Navier–Stokes equations”, Internat. J. Numer. Methods Fluids, 7 (1987), 1111–1145 | DOI | Zbl
[3] Gresho P. M., “Incompressible fluid dynamics: some fundamental formulatio issues”, Annual Review of Fluid Mechanics, 23 (1991), 413–453 | DOI | MR | Zbl
[4] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991 | MR | Zbl
[5] Chizhonkov E. V., “Application of the Cossera spectrum to the optimization of a method for solving the Stokes problem”, Russian J. Numer. Anal. Math. Modelling, 9:3 (1994), 191–199 | MR | Zbl
[6] Crouzeix M., “Etude d'une methode de linearisation. Resolution des equations de Stokes stationaries. Application aux equations des Navier–Stokes stationaries”, Cahiere de l'IRIA, 1974, no. 12, 139–244
[7] Mikhlin S. G., “Spektr puchka operatorov teorii uprugosti”, UMN, 28:3 (1973), 43–82 | MR | Zbl
[8] Kobelkov G. M., “O chislennykh metodakh resheniya uravnenii Nave–Stoksa v peremennykh skorost-davlenie”, Vychislitelnye protsessy i sistemy, no. 8, Nauka, M., 1991, 204–237 | MR
[9] Olshanskii M. A., “Ob odnoi zadache tipa Stoksa s parametrom”, ZhVM i MF, 36:2 (1996), 75–86 | MR
[10] Aristov P. P., Chizhonkov E. V., On the constant in the LBB condition for rectangular domains, Report No 9534, Dep. Math. Univ. Nijmegen, 1995 | MR
[11] Bakhvalov N. S., “Solution of the Stokes nonstationary problems by the fictious domain method”, Russian J. Numer. Anal. Math. Modelling, 10:3 (1995), 163–172 | MR | Zbl
[12] Kobel'kov G. M., “On solving the Navier–Stokes equations at large Reynolds numbers”, Russian J. Numer. Anal. Math. Modelling, 10:1 (1995), 33–40 | MR | Zbl
[13] Kobel'kov G. M., To numerical solution of nonstationary Stokes problem, Report No 9536, Dep. Math. Univ. Nijmegen, 1995
[14] Ol'shanskii M. A., “On numerical solution of nonstationary Stokes equations”, Russian J. Numer. Anal. Math. Modelling, 10:1 (1995), 81–92 | MR | Zbl
[15] Girault V., Raviart P. A., Finite element methods for Navier–Stokes equations, Springer-Verlag, Berlin, 1986 | MR | Zbl
[16] Nečas J., Equations aux derivees partielles, Presses de l'Universite de Montreal, Montreal, 1965
[17] Kobel'kov G. M., Valedinskiy V. D., “On the inequality $\|p\|\le c\|\operatorname{grad}p\|_{-1}$ and its finite dimensional image”, Soviet J. Numer. Anal. Math. Modelling, 1:3 (1986), 189–200 | MR | Zbl
[18] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman Publ., Boston, 1985 | MR | Zbl
[19] Cattabriga L., “Su un problema al contorno relativo al sistema di equazioni di Stokes”, Sem. Mat. Univ. Padova, 31 (1961), 308–340 | MR | Zbl
[20] Foias C., Temam R., “Remarques sur les equations de Navier–Stokes et les phenomenes successifs de bifurcation”, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4), 5:1 (1978), 29–63 | MR | Zbl
[21] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR
[22] Gunsburger M. D., Finite element methods for viscous incompressible flows, Acad. Press, INC, 1989
[23] Cahouet J., Chabart J. P., “Some fast 3D finite element solvers for the generalized Stokes problem”, Internat. J. Numer. Methods Fluids, 8 (1988), 869–895 | DOI | MR