On the Stokes problem with model boundary conditions
Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 603-620

Voir la notice de l'article provenant de la source Math-Net.Ru

For a wide class of two- and three-dimensional domains, boundary conditions on the velocity vector field for the Stokes problem are indicated ensuring that the corresponding Schur complement is the identity operator. These boundary conditions make it possible to “decouple” the Stokes problem into two separate problems, for pressure and for velocity. The solubility of the problem and the regularity of its solutions are studied and the connections between the results obtained and certain aspects of numerical methods in hydrodynamics (such as the LBB condition and the numerical solution of the generalized Stokes problem) are considered.
@article{SM_1997_188_4_a3,
     author = {M. A. Ol'shanskii},
     title = {On the {Stokes} problem with model boundary conditions},
     journal = {Sbornik. Mathematics},
     pages = {603--620},
     publisher = {mathdoc},
     volume = {188},
     number = {4},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_4_a3/}
}
TY  - JOUR
AU  - M. A. Ol'shanskii
TI  - On the Stokes problem with model boundary conditions
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 603
EP  - 620
VL  - 188
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_4_a3/
LA  - en
ID  - SM_1997_188_4_a3
ER  - 
%0 Journal Article
%A M. A. Ol'shanskii
%T On the Stokes problem with model boundary conditions
%J Sbornik. Mathematics
%D 1997
%P 603-620
%V 188
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_4_a3/
%G en
%F SM_1997_188_4_a3
M. A. Ol'shanskii. On the Stokes problem with model boundary conditions. Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 603-620. http://geodesic.mathdoc.fr/item/SM_1997_188_4_a3/