On duality theory for non-topological variants of the mass transfer problem
Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 571-602 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Duality theorems are proved in a mass formulation for non-topological variants of the mass transfer problem and of related extremal marginal problems. The connection between two types of problem is investigated (problems with fixed difference between the marginal measures, and problems with fixed marginal measures), and a criterion for their equivalence is obtained.
@article{SM_1997_188_4_a2,
     author = {V. L. Levin},
     title = {On duality theory for non-topological variants of the~mass transfer problem},
     journal = {Sbornik. Mathematics},
     pages = {571--602},
     year = {1997},
     volume = {188},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_4_a2/}
}
TY  - JOUR
AU  - V. L. Levin
TI  - On duality theory for non-topological variants of the mass transfer problem
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 571
EP  - 602
VL  - 188
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_4_a2/
LA  - en
ID  - SM_1997_188_4_a2
ER  - 
%0 Journal Article
%A V. L. Levin
%T On duality theory for non-topological variants of the mass transfer problem
%J Sbornik. Mathematics
%D 1997
%P 571-602
%V 188
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1997_188_4_a2/
%G en
%F SM_1997_188_4_a2
V. L. Levin. On duality theory for non-topological variants of the mass transfer problem. Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 571-602. http://geodesic.mathdoc.fr/item/SM_1997_188_4_a2/

[1] Kantorovich L. V., “O peremeschenii mass”, DAN SSSR, 37:7–8 (1942), 227–229

[2] Kantorovich L. V., Rubinshtein G. Sh., “Ob odnom funktsionalnom prostranstve i nekotorykh ekstremalnykh zadachakh”, DAN SSSR, 115:6 (1957), 1058–1061 | MR | Zbl

[3] Kantorovich L. V., Rubinshtein G. Sh., “Ob odnom prostranstve vpolne additivnykh funktsii”, Vestn. LGU. Ser. matem., mekh. i astr., 7:8 (1958), 52–59 | Zbl

[4] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[5] Monge G., “Mémoire sur la théorie des déblais et des remblais”, Histoire de l'Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique, 1781, 666–704

[6] Levin V. L., Milyutin A. A., “Zadacha o peremeschenii mass s razryvnoi funktsiei stoimosti i massovaya postanovka problemy dvoistvennosti vypuklykh ekstremalnykh zadach”, UMN, 34:3 (1979), 3–68 | MR | Zbl

[7] Levin V. L., “Zadacha o peremeschenii mass v topologicheskom prostranstve i veroyatnostnye mery na proizvedenii dvukh prostranstv, obladayuschie zadannymi marginalnymi merami”, DAN SSSR, 276:5 (1984), 1059–1064 | MR | Zbl

[8] Levin V. L., “Izmerimye selektory mnogoznachnykh otobrazhenii i zadacha o peremeschenii mass”, DAN SSSR, 292:5 (1987), 1048–1053 | MR | Zbl

[9] Levin V. L., “General Monge–Kantorovich problem and its applications in measure theory and mathematical economics”, Functional analysis, optimization and mathematical economics, A collection of papers dedicated to the memory of L. V. Kantorovich, Oxford University Press, New York–Oxford, 1990, 141–176 | MR | Zbl

[10] Levin V. L., “Dvoistvennost i approksimatsiya v zadache o peremeschenii mass”, Matematicheskaya ekonomika i funktsionalnyi analiz, Nauka, M., 1974, 94–108

[11] Levin V. L., “K zadache o peremeschenii mass”, DAN SSSR, 224:5 (1975), 1016–1019 | MR | Zbl

[12] Levin V. L., “O teoremakh dvoistvennosti v zadache Monzha–Kantorovicha”, UMN, 32:3 (1977), 171–172 | MR | Zbl

[13] Levin V. L., “Zadacha Monzha–Kantorovicha o peremeschenii mass”, Metody funktsionalnogo analiza v matematicheskoi ekonomike, Nauka, M., 1978, 23–55

[14] Levin V. L., “Nekotorye prilozheniya dvoistvennosti dlya zadachi o peremeschenii mass s polunepreryvnoi snizu funktsiei stoimosti. Zamknutye predpochteniya i teoriya Shoke”, DAN SSSR, 260:2 (1981), 284–288 | MR | Zbl

[15] Levin V. L., “Teoremy ob izmerimoi poleznosti dlya zamknutykh i leksikograficheskikh otnoshenii predpochteniya”, DAN SSSR, 270:3 (1983), 542–546 | MR | Zbl

[16] Levin V. L., “Teorema o nepreryvnoi poleznosti dlya zamknutykh predporyadkov na metrizuemom $\sigma$-kompaktnom prostranstve”, DAN SSSR, 273:4 (1983), 800–804 | MR | Zbl

[17] Levin V. L., “Lipshitsevy predporyadki i lipshitsevy funktsii poleznosti”, UMN, 39:6 (1984), 199–200 | MR | Zbl

[18] Levin V. L., “Funktsionalno zamknutye predporyadki i silnoe stokhasticheskoe dominirovanie”, DAN SSSR, 283:1 (1985), 30–34 | MR | Zbl

[19] Levin V. L., “Extremal problems with probability measures, functionally closed preorders and strong stochastic dominance”, Stochastic optimization, Lecture Notes in Control and Inform. Sci., 81, Springer-Verlag, Berlin, 1986, 435–447 | MR

[20] Levin V. L., “Formula dlya optimalnogo znacheniya zadachi Monzha–Kantorovicha s gladkoi funktsiei stoimosti i kharakterizatsiya tsiklicheski monotonnykh otobrazhenii”, Matem. sb., 181:12 (1990), 1694–1709 | MR

[21] Levin V. L., “Some applications of set-valued mappings in mathematical economics”, J. Math. Econom., 20 (1991), 69–87 | DOI | MR | Zbl

[22] Rachev S. T., “Zadacha Monzha–Kantorovicha o peremeschenii mass i ee primeneniya v stokhastike”, Teoriya veroyatnostei i ee prim., 29:4 (1984), 625–653 | MR | Zbl

[23] Levin V. L., Rachev S. T., “New duality theorems for marginal problems with some applications in stochastics”, Stability problems for stochastic models, Lecture Notes in Math., 1412, Springer-Verlag, Berlin, 1989, 137–171 | MR

[24] Levin V. L., “Duality for a non-topological version of the mass transportation problem”, Distributions with Fixed Marginals and Related Topics, IMS Lecture Notes. Monograph Ser., 28, 1996 (to appear) | MR

[25] Levin V. L., “A superlinear multifunction arising in connection with mass transfer problems”, Set-Valued Anal., 4 (1996), 41–65 | DOI | MR | Zbl

[26] Levin V. L., “Reduced cost functions and their applications”, J. Math. Econom., 28:2 (1997), 155–186 | DOI | MR

[27] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1967 | MR

[28] Gelfand I. M., Raikov D. A., Shilov G. E., Kommutativnye normirovannye koltsa, Fizmatgiz, M., 1960 | MR | Zbl

[29] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[30] Kellerer H. G., “Duality theorems for marginal problems”, Zeitschrift für Wahrscheinlichkeitstheorie und verw. Gebiete, 67 (1984), 399–432 | DOI | MR | Zbl

[31] Sudakov V. N., Geometricheskie problemy teorii beskonechnomernykh veroyatnostnykh raspredelenii, Tr. MIAN, 141, Nauka, M., 1976 | MR | Zbl

[32] Ramachandran D., Rüschendorf L., “A general duality theorem for marginal problems”, Probab. Theory Related Fields, 101 (1995), 311–319 | DOI | MR | Zbl

[33] Ramachandran D., Rüschendorf L., “Duality and perfect probability spaces”, Proc. Amer. Math. Soc., 124 (1996), 2223–2228 | DOI | MR | Zbl