On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers
Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 537-569 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for topological conjugacy are established in the case of structurally stable, orientation-preserving diffeomorphisms of a two-dimensional smooth closed oriented manifold $M$ that belong to the class $S(M)$, that is, satisfy the following conditions: 1) all the non-trivial basic sets of each $f\in S(M)$ are one-dimensional attractors or repellers; 2) there exist only finitely many heteroclinic trajectories lying in the intersections of stable and unstable manifolds of saddle periodic points belonging to trivial basic sets.
@article{SM_1997_188_4_a1,
     author = {V. Z. Grines},
     title = {On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers},
     journal = {Sbornik. Mathematics},
     pages = {537--569},
     year = {1997},
     volume = {188},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_4_a1/}
}
TY  - JOUR
AU  - V. Z. Grines
TI  - On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 537
EP  - 569
VL  - 188
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_4_a1/
LA  - en
ID  - SM_1997_188_4_a1
ER  - 
%0 Journal Article
%A V. Z. Grines
%T On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers
%J Sbornik. Mathematics
%D 1997
%P 537-569
%V 188
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1997_188_4_a1/
%G en
%F SM_1997_188_4_a1
V. Z. Grines. On the topological classification of structurally stable diffeomorphisms of surfaces with one-dimensional attractors and repellers. Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 537-569. http://geodesic.mathdoc.fr/item/SM_1997_188_4_a1/

[1] Palis J., “On Morse–Smale dynamical systems”, Topology, 8:4 (1969), 385–404 | DOI | MR

[2] Pali Dzh., Smeil S., “Teoremy strukturnoi ustoichivosti”, Matematika, 13:2 (1969), 145–155 | MR

[3] Robbin J. W., “A structural stability theorem”, Ann. of Math., 94:3 (1971), 447–493 | DOI | MR | Zbl

[4] Sannami A., “The stability theorems for discrete dynamical systems on two-dimensional manifolds”, Proc. Japan Acad. Ser. A. Math. Sci., 57 (1981), 403–407 ; Nagoya Math. J., 90 (1983), 1–55 | DOI | MR | Zbl | MR | Zbl

[5] Liao S. T., “On the stability conjecture”, Chinese Ann. of Math., 1:1 (1980), 9–30 | MR | Zbl

[6] Mane R., “An ergodic closing lemma”, Ann. of Math., 116:6 (1982), 503–540 | DOI | MR | Zbl

[7] Smale S., “Morse inequalities for a dynamical systems”, Bull. Amer. Math. Soc., 66 (1960), 43–49 | DOI | MR | Zbl

[8] Grines V. Z., “O topologicheskoi sopryazhennosti diffeomorfizmov dvumernogo mnogoobraziya na odnomernykh bazisnykh mnozhestvakh”, UMN, 29:6 (1974), 163–164 | MR | Zbl

[9] Grines V. Z., “O topologicheskoi sopryazhennosti diffeomorfizmov dvumernogo mnogoobraziya na odnomernykh orientiruemykh bazisnykh mnozhestvakh, I”, Tr. MMO, 32, URSS, M., 1975, 35–61 | MR

[10] Grines V. Z., “O topologicheskoi sopryazhennosti diffeomorfizmov dvumernogo mnogoobraziya na odnomernykh orientiruemykh bazisnykh mnozhestvakh, II”, Tr. MMO, 34, URSS, M., 1977, 243–252 | MR | Zbl

[11] Plykin R. V., “O geometrii giperbolicheskikh attraktorov gladkikh kaskadov”, UMN, 39:6 (1984), 75–113 | MR | Zbl

[12] Grines V. Z., Kalai Kh. Kh., “O topologicheskoi ekvivalentnosti diffeomorfizmov s netrivialnymi bazisnymi mnozhestvami na dvumernykh mnogoobraziyakh”, Metody kachestvennoi teorii differents. uravnenii, ed. E. A. Leontovich-Andronova, Gork. gos. un-t, Gorkii, 1988, 40–49 | MR

[13] Grines V. Z., Kalai Kh. Kh., Topologicheskaya klassifikatsiya bazisnykh mnozhestv bez par sopryazhennykh tochek $A$-diffeomorfizmov na poverkhnostyakh, Dep. VINITI. 1988. No 1137-V, Gorkii

[14] Aranson S. Kh., Grines V. Z., “Topologicheskaya klassifikatsiya kaskadov na zamknutykh dvumernykh mnogoobraziyakh”, UMN, 45:4 (1990), 3–32 | MR | Zbl

[15] Aranson S. Kh., Grines V. Z., “Kaskady na poverkhnostyakh”, Dinamicheskie sistemy s giperbolicheskim povedeniem, Itogi nauki i tekhniki. Sovr. problemy matem. Fundamentalnye napravleniya, 66, VINITI, M., 1991, 148–187 | MR | Zbl

[16] Zhirov A. Yu., “Giperbolicheskie attraktory diffeomorfizmov orientiruemykh poverkhnostei. 1: Kodirovanie, klassifikatsiya i nakrytiya”, Matem. sb., 185:6 (1994), 3–50 | MR | Zbl

[17] Zhirov A. Yu., “Giperbolicheskie attraktory diffeomorfizmov orientiruemykh poverkhnostei. 2: Perechislenie i primenenie k psevdoanosovskim diffeomorfizmam”, Matem. sb., 185:9 (1994), 29–80 | Zbl

[18] Zhirov A. Yu., “Giperbolicheskie attraktory diffeomorfizmov orientiruemykh poverkhnostei. 3: Algoritm klassifikatsii”, Matem. sb., 186:2 (1995), 59–82 | MR | Zbl

[19] Grines V. Z., “Topologicheskaya klassifikatsiya diffeomorfizmov Morsa–Smeila s konechnym mnozhestvom geteroklinicheskikh traektorii na poverkhnostyakh”, Matem. zametki, 54:3 (1993), 3–17 | MR | Zbl

[20] Smeil S., “Differentsiruemye dinamicheskie sistemy”, UMN, 25:1 (1970), 113–185 | MR

[21] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh”, Metody kachestvennoi teorii differents. uravnenii, ed. E. A. Lentovich-Andronova, Gork. gos. un-t, Gorkii, 1985, 22–38 | MR

[22] Bezdenezhnykh A. N., Grines V. Z., “Diffeomorfizmy s orientiruemymi geteroklinicheskimi mnozhestvami na dvumernykh mnogoobraziyakh”, Metody kachestvennoi teorii differents. uravnenii, ed. E. A. Lentovich-Andronova, Gork. gos. un-t, Gorkii, 1985, 139–152

[23] Bezdenezhnykh A. N., Grines V. Z., “Dinamicheskie svoistva i topologicheskaya klassifikatsiya gradientnopodobnykh diffeomorfizmov na dvumernykh mnogoobraziyakh, 2”, Metody kachestvennoi teorii differents. uravnenii, ed. E. A. Lentovich-Andronova, Gork. gos. un-t, Gorkii, 1987, 24–32 | MR

[24] Bezdenezhnykh A. N., Grines V. Z., “Realizatsiya gradientnopodobnykh diffeomorfizmov dvumernykh mnogoobrazii”, Differentsialnye i integralnye uravneniya, ed. N. F. Otrokova, Gork. gos. un-t, Gorkii, 1985, 33–37 | MR | Zbl

[25] Borevich E. A., “Usloviya topologicheskoi ekvivalentnosti dvumernykh diffeomorfizmov Morsa–Smeila”, Izv. vuzov. Ser. matem., 1980, no. 11, 12–17 | MR | Zbl

[26] Borevich E. A., “Usloviya topologicheskoi ekvivalentnosti dvumernykh diffeomorfizmov Morsa–Smeila”, Differents. uravneniya, 17:8 (1981), 1481–1482 | MR | Zbl

[27] Borevich E. A., “Topologicheskaya ekvivalentnost dvumernykh diffeomorfizmov Morsa–Smeila”, Izv. vuzov. Ser. matem., 1984, no. 4, 3–6 | MR | Zbl

[28] Borevich E. A., “Dvumernye diffeomorfizmy Morsa–Smeila, imeyuschie orientirovannye geteroklinicheskie svyazi”, Izv. vuzov. Ser. matem., 1989, no. 9, 77–79 | MR

[29] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR

[30] Anosov D. V., “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Trudy pyatoi mezhdunarodnoi konferentsii po nelineinym kolebaniyam, T. 2. Kachestvennye metody (In-t matematiki AN USSR), Naukova Dumka, Kiev, 1970, 39–45

[31] Bowen R., “Periodic points and measures for axiom A diffeomorfisms”, Trans. Amer. Math. Soc., 154 (1971), 337–397 | DOI | MR

[32] Plykin R. V., “O topologii bazisnykh mnozhestv diffeomorfizmov S. Smeila”, Matem. sb., 84:2 (1971), 301–312 | MR | Zbl

[33] Plykin R. V., “Istochniki i stoki $A$-diffeomorfizmov poverkhnostei”, Matem. sb., 94:2 (1974), 243–264 | MR | Zbl

[34] Robinson R. S., Williams R. F., “Finite stability is not generic”, Proc. of a symp. held on the Univ. of Brasil (1971), Acad. Press, New York, 1973, 451–462 | MR

[35] Nielsen J., “Surface trnsformation classes of algebraically finite type”, Det. Kgl. Dansk Videnskaternes Selskab. Math.-Phys. Meddelerser, 21 (1944), 1–89 | MR