A universal sequence in the classical travel-time inversion problem
Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 483-536 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inversion of the travel-time curve is a fundamental problem of mathematical geophysics: explosions and earthquakes take place on (or close to) the surface of the Earth, instruments record signals from them, and it is required to find the velocity of elastic waves in the interior of the Earth from the times taken by the signals travelling from the sources to the receivers (the travel-time curve). After the pioneering work at the beginning of the century and the detailed research in the 1960s one would hardly have expected the appearance of fundamentally new results on this problem in its classical formulation, when the wave velocity is assumed to depend only on the depth. However, it has turned out to be premature to regard this formulation as settled. The theorems proved here on a universal sequence and extremal properties of discrete measures will probably surprise specialists in the inverse problem and will interest both experts and amateurs in extremal problems.
@article{SM_1997_188_4_a0,
     author = {M. L. Gerver and E. A. Kudryavtseva},
     title = {A universal sequence in the~classical travel-time inversion problem},
     journal = {Sbornik. Mathematics},
     pages = {483--536},
     year = {1997},
     volume = {188},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_4_a0/}
}
TY  - JOUR
AU  - M. L. Gerver
AU  - E. A. Kudryavtseva
TI  - A universal sequence in the classical travel-time inversion problem
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 483
EP  - 536
VL  - 188
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_4_a0/
LA  - en
ID  - SM_1997_188_4_a0
ER  - 
%0 Journal Article
%A M. L. Gerver
%A E. A. Kudryavtseva
%T A universal sequence in the classical travel-time inversion problem
%J Sbornik. Mathematics
%D 1997
%P 483-536
%V 188
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1997_188_4_a0/
%G en
%F SM_1997_188_4_a0
M. L. Gerver; E. A. Kudryavtseva. A universal sequence in the classical travel-time inversion problem. Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 483-536. http://geodesic.mathdoc.fr/item/SM_1997_188_4_a0/

[1] Gerver M. L., “Ratsionalnye approksimatsii, ustoichivye mnogochleny i rassloeniya v zadache poiska samogo shirokogo volnovoda”, Geodinamika i prognoz zemletryasenii, Vychislitelnaya seismologiya, 26, Nauka, M., 1994, 176–201 | MR

[2] Gerver M. L., Suschestvovanie i edinstvennost maksimuma i teoremy o konusakh, $1$-approksimatsiyakh i rassloeniyakh dlya odnogo klassa ekstremalnykh zadach, Preprint, MITP RAN, 1994

[3] Gerver M. L., Kudryavtseva E. A., “Teorema ob otnosheniyakh predshestvovaniya, generiruemykh vpolne polozhitelnymi yadrami”, Matem. sb., 186:9 (1995), 19–44 | MR | Zbl

[4] Gerver M. L., Kudryavtseva E. A., “O granitse mnozhestva reshenii v zadache obrascheniya godografa”, Dokl. AN, 346:5 (1996), 672–674

[5] Gerver M. L., Kudryavtseva E. A., “Ob ekstremalnykh svoistvakh volnovodov s konechnym chislom sloev v zadache obrascheniya godografa”, Dokl. AN (to appear)

[6] Gerver M. L., Kudryavtseva E. A., “On the Boundary of the Set of Solutions in Travel Time Inversion and on Extremal Properties of Waveguides With a Finite Number of Layers”, IUGG XXI General Assembly, Abstracts. Week B. UB31B-7 (Boulder, Colorado. July 2–14, 1995), B10

[7] Kudryavtseva E. A., Gerver M. L., “An Algorithm Yielding the Universal Sequence $U$ in Travel Time Inversion”, IUGG XXI General Assembly, Abstracts. Week B. UB31B-13 (Boulder, Colorado. July 2–14, 1995), B11 | Zbl

[8] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[9] Herglotz G., “Über das Benndorfsche Problem der Fortpflanzungsgeschwindigkeit der Erdbebenstrahlen”, Phys. Zeitschrift, 8:5 (1907), 145–147 | Zbl

[10] Bateman H., “The solution of the integral equation which connects the velocity of propagation of an earthquake wave in the interior of the Earth with the times which the disturbance takes to travel to different stations on the Earth's surface”, Phil. Mag. Ser. 6, 19 (1910), 576–587 | Zbl

[11] Slichter L. B., “The theory of interpretation of seismic travel-time curves in horizontal structures”, Physics, 3:6 (1932), 273–295 | DOI | Zbl

[12] Gerver M. L., Markushevich V. M., “Issledovanie neodnoznachnosti pri opredelenii po godografu skorosti rasprostraneniya seismicheskoi volny”, Dokl. AN SSSR, 163:6 (1965), 1377–1380

[13] Gerver M. L., Markushevich V. M., “Determination of seismic wave velocity from the travel-time curve”, Geophys. J. Royal Astr. Soc., 11 (1966), 165–173 | Zbl

[14] Gerver M. L., Markushevich V. M., “Opredelenie po godografu skorosti rasprostraneniya seismicheskoi volny”, Metody i programmy dlya analiza seismicheskikh nablyudenii, Vychislitelnaya seismologiya, 3, Nauka, M., 1967, 3–51

[15] Kronrod A. S., Uzly i vesa kvadraturnykh formul, Nauka, M., 1964 | MR

[16] Polia G., Sege G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978

[17] Gerver M. L., “Neskolko prostykh teorem o raspolozhenii kornei”, UMN, 51:3 (1996), 191–192 | MR | Zbl

[18] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR

[19] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITTL, M.–L., 1950

[20] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972