@article{SM_1997_188_4_a0,
author = {M. L. Gerver and E. A. Kudryavtseva},
title = {A universal sequence in the~classical travel-time inversion problem},
journal = {Sbornik. Mathematics},
pages = {483--536},
year = {1997},
volume = {188},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_4_a0/}
}
M. L. Gerver; E. A. Kudryavtseva. A universal sequence in the classical travel-time inversion problem. Sbornik. Mathematics, Tome 188 (1997) no. 4, pp. 483-536. http://geodesic.mathdoc.fr/item/SM_1997_188_4_a0/
[1] Gerver M. L., “Ratsionalnye approksimatsii, ustoichivye mnogochleny i rassloeniya v zadache poiska samogo shirokogo volnovoda”, Geodinamika i prognoz zemletryasenii, Vychislitelnaya seismologiya, 26, Nauka, M., 1994, 176–201 | MR
[2] Gerver M. L., Suschestvovanie i edinstvennost maksimuma i teoremy o konusakh, $1$-approksimatsiyakh i rassloeniyakh dlya odnogo klassa ekstremalnykh zadach, Preprint, MITP RAN, 1994
[3] Gerver M. L., Kudryavtseva E. A., “Teorema ob otnosheniyakh predshestvovaniya, generiruemykh vpolne polozhitelnymi yadrami”, Matem. sb., 186:9 (1995), 19–44 | MR | Zbl
[4] Gerver M. L., Kudryavtseva E. A., “O granitse mnozhestva reshenii v zadache obrascheniya godografa”, Dokl. AN, 346:5 (1996), 672–674
[5] Gerver M. L., Kudryavtseva E. A., “Ob ekstremalnykh svoistvakh volnovodov s konechnym chislom sloev v zadache obrascheniya godografa”, Dokl. AN (to appear)
[6] Gerver M. L., Kudryavtseva E. A., “On the Boundary of the Set of Solutions in Travel Time Inversion and on Extremal Properties of Waveguides With a Finite Number of Layers”, IUGG XXI General Assembly, Abstracts. Week B. UB31B-7 (Boulder, Colorado. July 2–14, 1995), B10
[7] Kudryavtseva E. A., Gerver M. L., “An Algorithm Yielding the Universal Sequence $U$ in Travel Time Inversion”, IUGG XXI General Assembly, Abstracts. Week B. UB31B-13 (Boulder, Colorado. July 2–14, 1995), B11 | Zbl
[8] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR
[9] Herglotz G., “Über das Benndorfsche Problem der Fortpflanzungsgeschwindigkeit der Erdbebenstrahlen”, Phys. Zeitschrift, 8:5 (1907), 145–147 | Zbl
[10] Bateman H., “The solution of the integral equation which connects the velocity of propagation of an earthquake wave in the interior of the Earth with the times which the disturbance takes to travel to different stations on the Earth's surface”, Phil. Mag. Ser. 6, 19 (1910), 576–587 | Zbl
[11] Slichter L. B., “The theory of interpretation of seismic travel-time curves in horizontal structures”, Physics, 3:6 (1932), 273–295 | DOI | Zbl
[12] Gerver M. L., Markushevich V. M., “Issledovanie neodnoznachnosti pri opredelenii po godografu skorosti rasprostraneniya seismicheskoi volny”, Dokl. AN SSSR, 163:6 (1965), 1377–1380
[13] Gerver M. L., Markushevich V. M., “Determination of seismic wave velocity from the travel-time curve”, Geophys. J. Royal Astr. Soc., 11 (1966), 165–173 | Zbl
[14] Gerver M. L., Markushevich V. M., “Opredelenie po godografu skorosti rasprostraneniya seismicheskoi volny”, Metody i programmy dlya analiza seismicheskikh nablyudenii, Vychislitelnaya seismologiya, 3, Nauka, M., 1967, 3–51
[15] Kronrod A. S., Uzly i vesa kvadraturnykh formul, Nauka, M., 1964 | MR
[16] Polia G., Sege G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978
[17] Gerver M. L., “Neskolko prostykh teorem o raspolozhenii kornei”, UMN, 51:3 (1996), 191–192 | MR | Zbl
[18] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR
[19] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, GITTL, M.–L., 1950
[20] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972