Estimates of the rate of convergence of projective and projective-difference methods for weakly solvable parabolic equations
Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 465-481 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a weakly solvable parabolic problem in a separable Hilbert space. We seek approximations to the exact solution by projective and projective-difference methods. In this connection the discretization of the problem with respect to the spatial variables is carried out by the semidiscrete method of Galerkin, and with respect to time by the implicit method of Euler. In this paper we establish a coercive mean-square error estimate for the approximate solutions. We illustrate the effectiveness of these estimates with parabolic equations of second order with Dirichlet or Neumann boundary conditions in projective subspaces of finite element type.
@article{SM_1997_188_3_a6,
     author = {V. V. Smagin},
     title = {Estimates of the~rate of convergence of projective and projective-difference methods for weakly solvable parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {465--481},
     year = {1997},
     volume = {188},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_3_a6/}
}
TY  - JOUR
AU  - V. V. Smagin
TI  - Estimates of the rate of convergence of projective and projective-difference methods for weakly solvable parabolic equations
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 465
EP  - 481
VL  - 188
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_3_a6/
LA  - en
ID  - SM_1997_188_3_a6
ER  - 
%0 Journal Article
%A V. V. Smagin
%T Estimates of the rate of convergence of projective and projective-difference methods for weakly solvable parabolic equations
%J Sbornik. Mathematics
%D 1997
%P 465-481
%V 188
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1997_188_3_a6/
%G en
%F SM_1997_188_3_a6
V. V. Smagin. Estimates of the rate of convergence of projective and projective-difference methods for weakly solvable parabolic equations. Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 465-481. http://geodesic.mathdoc.fr/item/SM_1997_188_3_a6/

[1] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[2] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[3] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galërkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. uravneniya, 11:7 (1975), 1269–1277 | MR | Zbl

[4] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[5] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | Zbl

[6] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionno-raznostnogo metoda dlya abstraktnogo parabolicheskogo uravneniya s operatorom, oblast opredeleniya kotorogo zavisit ot vremeni”, Sibirskii matem. zhurn., 37:2 (1996), 406–418 | MR | Zbl

[7] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[8] Fujie Y., Tanabe H., “On some parabolic equations of evolution in Hilbert space”, Osaka J. Math., 10 (1973), 115–130 | MR | Zbl

[9] Streng G., Fiks Dzh., Teoriya metoda konechnykh elementov, Mir, M., 1977 | MR

[10] Suzuki T., “An abstract study of Galerkin's method for the evolution equation $u_t+A(t)u=0$ of parabolic type with the Neumann boundary condition”, J. Fac. Sci. Univ. Tokyo. Sect. IA Math., 25:1 (1978), 25–46 | MR | Zbl