Groups of obstructions to surgery and splitting for a~manifold pair
Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 449-463

Voir la notice de l'article provenant de la source Math-Net.Ru

The surgery obstruction groups $LP_*$ of manifold pairs are studied. An algebraic version of these groups for squares of antistructures of a special form equipped with decorations is considered. The squares of antistructures in question are natural generalizations of squares of fundamental groups that occur in the splitting problem for a one-sided submanifold of codimension 1 in the case when the fundamental group of the submanifold is mapped epimorphically onto the fundamental group of the manifold. New connections between the groups $LP_*$, the Novikov–Wall groups, and the splitting obstruction groups are established.
@article{SM_1997_188_3_a5,
     author = {Yu. V. Muranov and D. Repov\v{s}},
     title = {Groups of obstructions to surgery and splitting for a~manifold pair},
     journal = {Sbornik. Mathematics},
     pages = {449--463},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_3_a5/}
}
TY  - JOUR
AU  - Yu. V. Muranov
AU  - D. Repovš
TI  - Groups of obstructions to surgery and splitting for a~manifold pair
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 449
EP  - 463
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_3_a5/
LA  - en
ID  - SM_1997_188_3_a5
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%A D. Repovš
%T Groups of obstructions to surgery and splitting for a~manifold pair
%J Sbornik. Mathematics
%D 1997
%P 449-463
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_3_a5/
%G en
%F SM_1997_188_3_a5
Yu. V. Muranov; D. Repovš. Groups of obstructions to surgery and splitting for a~manifold pair. Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 449-463. http://geodesic.mathdoc.fr/item/SM_1997_188_3_a5/