Absorbing sets for $n$-dimensional spaces in absolute Borel and projective classes
Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 435-447

Voir la notice de l'article provenant de la source Math-Net.Ru

Absorbing sets are constructed in the sense of Bestvina and Mogilski for $n$-dimensional separable metric spaces in absolute Borel and projective classes.
@article{SM_1997_188_3_a4,
     author = {M. M. Zarichnyi},
     title = {Absorbing sets for $n$-dimensional spaces in absolute {Borel} and projective classes},
     journal = {Sbornik. Mathematics},
     pages = {435--447},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_3_a4/}
}
TY  - JOUR
AU  - M. M. Zarichnyi
TI  - Absorbing sets for $n$-dimensional spaces in absolute Borel and projective classes
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 435
EP  - 447
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_3_a4/
LA  - en
ID  - SM_1997_188_3_a4
ER  - 
%0 Journal Article
%A M. M. Zarichnyi
%T Absorbing sets for $n$-dimensional spaces in absolute Borel and projective classes
%J Sbornik. Mathematics
%D 1997
%P 435-447
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_3_a4/
%G en
%F SM_1997_188_3_a4
M. M. Zarichnyi. Absorbing sets for $n$-dimensional spaces in absolute Borel and projective classes. Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 435-447. http://geodesic.mathdoc.fr/item/SM_1997_188_3_a4/