Absorbing sets for $n$-dimensional spaces in absolute Borel and projective classes
Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 435-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Absorbing sets are constructed in the sense of Bestvina and Mogilski for $n$-dimensional separable metric spaces in absolute Borel and projective classes.
@article{SM_1997_188_3_a4,
     author = {M. M. Zarichnyi},
     title = {Absorbing sets for $n$-dimensional spaces in absolute {Borel} and projective classes},
     journal = {Sbornik. Mathematics},
     pages = {435--447},
     year = {1997},
     volume = {188},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_3_a4/}
}
TY  - JOUR
AU  - M. M. Zarichnyi
TI  - Absorbing sets for $n$-dimensional spaces in absolute Borel and projective classes
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 435
EP  - 447
VL  - 188
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_3_a4/
LA  - en
ID  - SM_1997_188_3_a4
ER  - 
%0 Journal Article
%A M. M. Zarichnyi
%T Absorbing sets for $n$-dimensional spaces in absolute Borel and projective classes
%J Sbornik. Mathematics
%D 1997
%P 435-447
%V 188
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1997_188_3_a4/
%G en
%F SM_1997_188_3_a4
M. M. Zarichnyi. Absorbing sets for $n$-dimensional spaces in absolute Borel and projective classes. Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 435-447. http://geodesic.mathdoc.fr/item/SM_1997_188_3_a4/

[1] Anderson R. D., “On topological infinite deficiency”, Michigan Math. J., 14 (1967), 365–383 | DOI | MR | Zbl

[2] Bessaga C., Pelczynski A., “The estimated extension theorem, homogeneous collections and their application to the topological classification of linear metric spaces and convex sets”, Fund. Math., 70 (1970), 153–190 | MR

[3] Torunczyk H., “Skeletonized sets in complete metric spaces and homeomorphisms of the Hilbert cube”, Bull. Acad. Pol. Sci. Ser. Math. Astr. Phys., 18 (1970), 119–126 | MR | Zbl

[4] Bestvina M., Mogilski J., “Characterizing certain incomplete infinite-dimensional absolute retracts”, Michigan Math. J., 33 (1986), 291–313 | DOI | MR | Zbl

[5] Cauty R., Ensembles absorbants pour les classes projectives, Preprint, 1991 | MR

[6] Dijkstra J. J., Dobrowolski T., Marciszewski W., van Mill J., Mogilski J., “Recent classification and characterization results in geometric topology”, Bull. Amer. Math. Soc. (New Series), 22:2 (1990), 277–283 | DOI | MR | Zbl

[7] Bestvina M., Characterizing $n$-dimensional universal Menger compacta, Mem. Amer. Math. Soc., 380, 1988 | MR

[8] Dranishnikov A. N., “Universalnye mengerovskie kompakty i universalnye otobrazheniya”, Matem. sb., 129:1 (1986), 121–139 | MR

[9] Dobrowolski T., Mogilski J., “Problems on topological classification of incomplete metric spaces”, Open problems in topology, eds. J. van Mill, G. M. Reeds, North Holland, Amsterdam, 1990, 409–429 | MR

[10] Geoghegan R., Summerhill R. R., “Pseudo-boundaries and pseudo-interiors in euclidean spaces and topological manifolds”, Trans. Amer. Math. Soc., 194 (1974), 141–165 | DOI | MR | Zbl

[11] Dijkstra J. J., “$k$-dimensional skeletoids in $\mathbb R^n$ and the Hilbert cube”, Topol. Appl., 19:1 (1985), 13–28 | DOI | MR | Zbl

[12] Dijkstra J. J., van Mill J., Mogilski J., “Classification of finite-dimensional universal pseudo-boundaries and pseudo-interiors”, Trans. Amer. Math. Soc., 332:2 (1992), 693–709 | DOI | MR | Zbl

[13] Fedorchuk V. V., Chigogidze A. Ch., Absolyutnye retrakty i beskonechnomernye mnogoobraziya, Nauka, M., 1992 | MR | Zbl

[14] Henderson D. W., “$Z$-sets in ANRs”, Trans. Amer. Math. Soc., 194 (1974), 141–165 | DOI | MR

[15] Chigogidze A. Ch., “Kompakty, lezhaschie v $n$-mernom universalnom kompakte Mengera i imeyuschie v nem gomeomorfnye dopolneniya”, Matem. sb., 133:4 (1987), 481–496 | Zbl

[16] Kuratovskii K., Topologiya, T. 1, Nauka, M., 1966

[17] Schepin E. V., “Funktory i neschetnye stepeni kompaktov”, UMN, 36:3 (1981), 3–62 | MR | Zbl

[18] Dranishnikov A. N., “Absolyutnye ekstenzory v razmernosti $n$ i $n$-myagkie otobrazheniya, povyshayuschie razmernost”, UMN, 39:5 (1984), 55–95 | MR | Zbl

[19] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[20] Chigogidze A. Ch., “$n$-myagkie otobrazheniya $n$-mernykh prostranstv”, Matem. zametki, 46:1 (1989), 88–95 | MR | Zbl

[21] West J., “The ambient homeomorphy of an incomplete subspace of infinite-dimensional Hilbert spaces”, Pacif. J. Math., 34:1 (1970), 257–267 | MR | Zbl

[22] Chigogidze A. Ch., “Teoriya $n$-sheipov”, UMN, 44:5 (1989), 117–140 | MR | Zbl

[23] Zarichnyi M. M., “Funktory, porozhdennye universalnymi otobrazheniyami in'ektivnykh predelov posledovatelnostei kompaktov Mengera”, Matematika, Nauchnye trudy, 562, Latv. un-t, Riga, 1991, 95–102 | MR

[24] Mandelbrot B. B., The fractal geometry of nature, Freeman, San Francisco, 1982 | MR | Zbl

[25] Engelking R., Dimension theory, PWN, Warszawa, 1978 | MR | Zbl