Ergodicity of billiards in polygons
Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 389-434

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space of all polygons, a topologically massive subset consisting of polygons with ergodic billiard flows is explicitly described. The elements of this set have a specified order of approximation by rational polygons. As intermediate results, constructive versions of the ergodic theorem for the billiard in a rational polygon and for the geodesic flow on a surface with flat structure, and also a constructive quadratic estimate for the growth of the number of saddle connections (singular trajectories) in a flat structure, are proved.
@article{SM_1997_188_3_a3,
     author = {Ya. B. Vorobets},
     title = {Ergodicity of billiards in polygons},
     journal = {Sbornik. Mathematics},
     pages = {389--434},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_3_a3/}
}
TY  - JOUR
AU  - Ya. B. Vorobets
TI  - Ergodicity of billiards in polygons
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 389
EP  - 434
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_3_a3/
LA  - en
ID  - SM_1997_188_3_a3
ER  - 
%0 Journal Article
%A Ya. B. Vorobets
%T Ergodicity of billiards in polygons
%J Sbornik. Mathematics
%D 1997
%P 389-434
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_3_a3/
%G en
%F SM_1997_188_3_a3
Ya. B. Vorobets. Ergodicity of billiards in polygons. Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 389-434. http://geodesic.mathdoc.fr/item/SM_1997_188_3_a3/