Ergodicity of billiards in polygons
Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 389-434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the space of all polygons, a topologically massive subset consisting of polygons with ergodic billiard flows is explicitly described. The elements of this set have a specified order of approximation by rational polygons. As intermediate results, constructive versions of the ergodic theorem for the billiard in a rational polygon and for the geodesic flow on a surface with flat structure, and also a constructive quadratic estimate for the growth of the number of saddle connections (singular trajectories) in a flat structure, are proved.
@article{SM_1997_188_3_a3,
     author = {Ya. B. Vorobets},
     title = {Ergodicity of billiards in polygons},
     journal = {Sbornik. Mathematics},
     pages = {389--434},
     year = {1997},
     volume = {188},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_3_a3/}
}
TY  - JOUR
AU  - Ya. B. Vorobets
TI  - Ergodicity of billiards in polygons
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 389
EP  - 434
VL  - 188
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_3_a3/
LA  - en
ID  - SM_1997_188_3_a3
ER  - 
%0 Journal Article
%A Ya. B. Vorobets
%T Ergodicity of billiards in polygons
%J Sbornik. Mathematics
%D 1997
%P 389-434
%V 188
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1997_188_3_a3/
%G en
%F SM_1997_188_3_a3
Ya. B. Vorobets. Ergodicity of billiards in polygons. Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 389-434. http://geodesic.mathdoc.fr/item/SM_1997_188_3_a3/

[1] Zemlyakov A. N., Katok A. B., “Topologicheskaya tranzitivnost bilyardov v mnogougolnikakh”, Matem. zametki, 18:2 (1975), 291–300 | MR | Zbl

[2] Kerckhoff S., Masur H., Smillie J., “Ergodicity of billiard flows and quadratic differentials”, Ann. of Math., 124:2 (1986), 293–311 | DOI | MR | Zbl

[3] Pospiech F., Stepin A. M., “Über die vollständige Nichtintegrierbarkeit eines Systems zweier Teilchen auf einem Intervall”, Wiss. Z. Univ. Halle, 37:4 (1988), 89–98 | MR | Zbl

[4] Masur H., “The growth rate of trajectories of a quadratic differential”, Ergodic Theory Dynam. Systems, 10:1 (1990), 151–176 | DOI | MR | Zbl

[5] Boshernitzan M., “A condition for minimal interval exchange maps to be uniquely ergodic”, Duke Math. J., 52:3 (1985), 723–752 | DOI | MR | Zbl

[6] Vorobets Ya. B., “Ergodichnost bilyardov v mnogougolnikakh: yavnye primery”, UMN, 51:4 (1996), 151–152 | MR | Zbl