Asymptotic behaviour of the~solutions of inverse problems for parabolic equations with irregular coefficients
Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 371-387

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of asymptotic proximity as $t\to\infty$ of the solutions of the inverse problem for a parabolic equation with an unknown right-hand side and the solution of the limiting stationary inverse problem in a bounded domain is studied. The overdetermination conditions are given in integral form. The conditions on the proximity of the coefficients of the stationary and the non-stationary problems are formulated in a certain very weak sense, which allows, in particular, oscillations of the coefficients.
@article{SM_1997_188_3_a2,
     author = {I. A. Vasin and V. L. Kamynin},
     title = {Asymptotic behaviour of the~solutions of inverse problems for parabolic equations with irregular coefficients},
     journal = {Sbornik. Mathematics},
     pages = {371--387},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_3_a2/}
}
TY  - JOUR
AU  - I. A. Vasin
AU  - V. L. Kamynin
TI  - Asymptotic behaviour of the~solutions of inverse problems for parabolic equations with irregular coefficients
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 371
EP  - 387
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_3_a2/
LA  - en
ID  - SM_1997_188_3_a2
ER  - 
%0 Journal Article
%A I. A. Vasin
%A V. L. Kamynin
%T Asymptotic behaviour of the~solutions of inverse problems for parabolic equations with irregular coefficients
%J Sbornik. Mathematics
%D 1997
%P 371-387
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_3_a2/
%G en
%F SM_1997_188_3_a2
I. A. Vasin; V. L. Kamynin. Asymptotic behaviour of the~solutions of inverse problems for parabolic equations with irregular coefficients. Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 371-387. http://geodesic.mathdoc.fr/item/SM_1997_188_3_a2/