Hindering systems for convex bodies
Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 327-339 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is an investigation of hindering systems (in the sense of Mani) and strongly hindering systems for compact convex bodies. The main theorem states that for any compact convex body $M$ there exists a strongly hindering system containing at most $\operatorname {md}M+1$ points. Other properties of hindering systems are also investigated (for smooth bodies, strictly convex bodies, direct vector sums, and so on).
@article{SM_1997_188_3_a0,
     author = {V. G. Boltyanskii},
     title = {Hindering systems for convex bodies},
     journal = {Sbornik. Mathematics},
     pages = {327--339},
     year = {1997},
     volume = {188},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_3_a0/}
}
TY  - JOUR
AU  - V. G. Boltyanskii
TI  - Hindering systems for convex bodies
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 327
EP  - 339
VL  - 188
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_3_a0/
LA  - en
ID  - SM_1997_188_3_a0
ER  - 
%0 Journal Article
%A V. G. Boltyanskii
%T Hindering systems for convex bodies
%J Sbornik. Mathematics
%D 1997
%P 327-339
%V 188
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1997_188_3_a0/
%G en
%F SM_1997_188_3_a0
V. G. Boltyanskii. Hindering systems for convex bodies. Sbornik. Mathematics, Tome 188 (1997) no. 3, pp. 327-339. http://geodesic.mathdoc.fr/item/SM_1997_188_3_a0/

[1] Mani P., “On polytopes fixed by their vertices”, Acta Math. Hungar., 22 (1971), 269–273 | MR

[2] Fejes Toth L., “On primitive polyhedra”, Acta Math. Hungar., 13 (1962), 379–383 | DOI | MR

[3] Boltyanskii V. G., “Teorema Khelli dlya $H$-vypuklykh mnozhestv”, Dokl. AN SSSR, 226:2 (1976), 249–252 | MR | Zbl

[4] Boltyanski V. G., Martini H., “Combinatorial geometry of belt bodies”, Results Math., 28 (1995), 224–249 | MR | Zbl

[5] Boltyanski V. G., E. Morales Amaya, “Minimal fixing systems for convex bodies”, J. Appl. Analysis, 1:1 (1955), 1–13 | MR

[6] Boltyanskii V. G., “Reshenie problemy osvescheniya dlya poyaskovykh tel”, Matem. zametki, 58:4 (1996), 505–511 | MR

[7] Baladze E. D., Boltyanskii V. G., “Poyaskovye tela i razmernost Khelli”, Matem. sb., 186:2 (1995), 3–20 | MR | Zbl

[8] Boltyanski V. G., Martini H., “On maximal primitive fixing systems”, Beiträge Algebra Geom., 37:1 (1996), 199–207 | MR | Zbl

[9] Boltyanskii V. G., “Obobschenie odnoi teoremy Sekefalvi-Nadya”, Dokl. AN SSSR, 228:2 (1976), 265–268 | MR | Zbl

[10] Bollobás B., “Fixing system for convex bodies”, Studia Sci. Math. Hungar., 2 (1967), 351–354 | MR | Zbl

[11] Boltyanskii V. G., “Neskolko teorem kombinatornoi geometrii”, Matem. zametki, 21:1 (1977), 117–124 | MR | Zbl

[12] Boltyanski V. G., “A new step in the solution of the Szökefalvi-Nagy problem”, Discrete Comput. Geom., 8:1 (1992), 27–49 | DOI | MR | Zbl