Tensor invariants of natural mechanical systems on compact surfaces, and the~corresponding integrals
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 307-326

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper sufficient conditions are given for the existence of tensor invariants of geodesic flows to imply their integrability. Analogous assertions are also proved for trajectory automorphisms of geodesic flows. All the tensor invariants on surfaces of constant negative curvature are described.
@article{SM_1997_188_2_a6,
     author = {P. I. Topalov},
     title = {Tensor invariants of natural mechanical systems on compact surfaces, and the~corresponding integrals},
     journal = {Sbornik. Mathematics},
     pages = {307--326},
     publisher = {mathdoc},
     volume = {188},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a6/}
}
TY  - JOUR
AU  - P. I. Topalov
TI  - Tensor invariants of natural mechanical systems on compact surfaces, and the~corresponding integrals
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 307
EP  - 326
VL  - 188
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_2_a6/
LA  - en
ID  - SM_1997_188_2_a6
ER  - 
%0 Journal Article
%A P. I. Topalov
%T Tensor invariants of natural mechanical systems on compact surfaces, and the~corresponding integrals
%J Sbornik. Mathematics
%D 1997
%P 307-326
%V 188
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_2_a6/
%G en
%F SM_1997_188_2_a6
P. I. Topalov. Tensor invariants of natural mechanical systems on compact surfaces, and the~corresponding integrals. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 307-326. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a6/