Tensor invariants of natural mechanical systems on compact surfaces, and the~corresponding integrals
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 307-326
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper sufficient conditions are given for the existence of tensor invariants of geodesic flows to imply their integrability. Analogous assertions are also proved for trajectory automorphisms of geodesic flows. All the tensor invariants on surfaces of constant negative curvature are described.
@article{SM_1997_188_2_a6,
author = {P. I. Topalov},
title = {Tensor invariants of natural mechanical systems on compact surfaces, and the~corresponding integrals},
journal = {Sbornik. Mathematics},
pages = {307--326},
publisher = {mathdoc},
volume = {188},
number = {2},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a6/}
}
TY - JOUR AU - P. I. Topalov TI - Tensor invariants of natural mechanical systems on compact surfaces, and the~corresponding integrals JO - Sbornik. Mathematics PY - 1997 SP - 307 EP - 326 VL - 188 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_2_a6/ LA - en ID - SM_1997_188_2_a6 ER -
P. I. Topalov. Tensor invariants of natural mechanical systems on compact surfaces, and the~corresponding integrals. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 307-326. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a6/