Intertwinings of tensor products, and the stochastic centralizer of dynamical systems
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 237-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A dynamical system is called $\omega$-simple if all its ergodic joinings of the second order (except for $\mu \otimes \mu$) are measures concentrated on the graphs of finite-valued maps commuting with the system, the number of inequivalent graphs of this kind being at most countable. This class of dynamical systems contains, for example, horocycle flows and mixing actions of the group $\mathbb R^n$ with partial cyclic approximation. It is proved in this paper that $\omega$-simple mixing flows have multiple mixing, which is a consequence of results on stochastic intertwinings of flows. Properties of dynamical systems with general time are investigated in this direction, including actions with discrete and non-commutative time. The results obtained depend on the type of system.
@article{SM_1997_188_2_a3,
     author = {V. V. Ryzhikov},
     title = {Intertwinings of tensor products, and the~stochastic centralizer of dynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {237--263},
     year = {1997},
     volume = {188},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a3/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Intertwinings of tensor products, and the stochastic centralizer of dynamical systems
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 237
EP  - 263
VL  - 188
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_2_a3/
LA  - en
ID  - SM_1997_188_2_a3
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Intertwinings of tensor products, and the stochastic centralizer of dynamical systems
%J Sbornik. Mathematics
%D 1997
%P 237-263
%V 188
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1997_188_2_a3/
%G en
%F SM_1997_188_2_a3
V. V. Ryzhikov. Intertwinings of tensor products, and the stochastic centralizer of dynamical systems. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 237-263. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a3/

[1] Rudolph D., “An example of a measure-preserving map with minimal self-joinings, and applications”, J. Anal. Math., 35 (1979), 97–122 | DOI | MR | Zbl

[2] Ratner M., “Horocycle flows, joinings and rigidity problems”, Ann. of Math., 118 (1983), 277–313 | DOI | MR | Zbl

[3] del Junco A., “A family of counter-examples in ergodic theory”, Israel J. Math., 44 (1983), 160–188 | DOI | MR | Zbl

[4] Ryzhikov V. V., “Stochastic intertwinings and multiple mixing of dynamical systems”, J. Dynamical and Control Systems, 2:1 (1996), 1–19 | DOI | MR | Zbl

[5] del Junco A., Rudolph D., “On ergodic action whose self-joinings are graphs”, Ergodic Theory Dynam. Systems, 7 (1987), 531–557 | MR | Zbl

[6] Thouvenot J.-P., “Some properties and applications of joinings in ergodic theory”, Ergodic theory and its connections with harmonic analysis, Proc. of the 1993 Alexandria Conference, LMS Lecture notes series, 205, eds. K. Petersen, I. Salama, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[7] Vershik A. M., “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie protsessy”, Zapiski nauch. sem. LOMI, 72, Nauka, L., 1977, 26–61 | MR | Zbl

[8] Rokhlin V. A., “Endomorfizmy kompaktnykh kommutativnykh grupp”, Izv. AN SSSR. Ser. matem., 13 (1949), 329–340 | MR | Zbl

[9] King J., “Ergodic properties where order $4$ implies infinite order”, Israel J. Math., 80 (1992), 65–86 | DOI | MR | Zbl

[10] Ryzhikov V. V., “Dzhoiningi, spleteniya, faktory i peremeshivayuschie svoistva dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 57:1 (1993), 102–128 | Zbl

[11] Ryzhikov V. V., “Peremeshivanie, rang i minimalnoe samoprisoedinenie deistvii s invariantnoi meroi”, Matem. sb., 183:3 (1992), 133–160 | MR

[12] Host B., “Mixing of all orders and pairwise independent joinings of systems with singular spectrum”, Israel J. Math., 76 (1991), 289–298 | DOI | MR | Zbl

[13] Glasner E., Host B., Rudolph D., “Simple systems and their higher order self-joinings”, Israel J. Math., 78 (1992), 131–142 | DOI | MR | Zbl

[14] Sinai Ya. G., Khanin K. M., “Peremeshivanie nekotorykh klassov spetsialnykh potokov nad povorotom okruzhnosti”, Funkts. analiz i ego prilozh., 26:3 (1992), 1–21 | MR | Zbl

[15] Oseledets V. A., “Avtomorfizmy s prostym nepreryvnym spektrom bez gruppovogo svoistva”, Matem. zametki, 5:3 (1969), 323–326 | MR | Zbl

[16] Stepin A. M., “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50 (1986), 801–834 | MR

[17] Furstenberg H., “Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation”, Math. Systems Theory, 1 (1967), 1–49 | DOI | MR | Zbl

[18] Gurevich B. M., “Entropiya potoka oritsiklov”, Dokl. AN SSSR, 136:4 (1961), 768–770 | MR | Zbl

[19] Anosov D. V., Geodezicheskie potoki na na rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Tr. MIAN, 90, Nauka, M., 1967 | MR

[20] Anosov D. V., Sinai Ya. G., “Nekotorye gladkie dinamicheskie sistemy”, UMN, 22:5 (1967), 107–172 | MR | Zbl

[21] Gelfand I. M., Fomin S. V., “Geodezicheskie potoki na mnogoobraziyakh postoyannoi otritsatelnoi krivizny”, UMN, 7:1 (1952), 118–137 | MR | Zbl

[22] Parasyuk O. S., “Potoki gorotsiklov na poverkhnostyakh postoyannoi otritsatelnoi krivizny”, UMN, 8:3 (1953), 125–126 | MR | Zbl

[23] Katok A. B., Stepin A. M., “Approksimatsii v ergodicheskoi teorii”, UMN, 22:5 (1967), 81–106 | MR | Zbl

[24] Bourgain J., “On the spectral type of Ornstein's class one transformaitions”, Israel J. Math., 84 (1993), 53–63 | DOI | MR | Zbl

[25] Ryzhikov V. V., “Zamechanie o kratnom peremeshivanii”, UMN, 44:1 (1989), 205–206 | MR | Zbl

[26] Thouvenot J.-P., “Une classe de systemes pour lesquels la conjecture de Pinsker est vraie”, Israel J. Math., 21:2–3 (1975), 208–214 | DOI | MR | Zbl

[27] Kolmogorov A. N., “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh superpozitsiyami nepreryvnykh funktsii menshego chisla peremennykh”, Dokl. AN SSSR, 108:2 (1956), 179–182 | MR

[28] Arnold V. I., “O funktsiyakh trekh peremennykh”, Dokl. AN SSSR, 114:4 (1957), 679–681 | MR

[29] Park K., “$\mathrm{GL}(2,\ZZ)$ action on a two torus”, Proc. Amer. Math. Soc., 144:4 (1992), 955–963 | DOI | MR