On translates of convex measures
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 227-236

Voir la notice de l'article provenant de la source Math-Net.Ru

The following alternative is proved for a convex Radon measure $\mu$, on a locally convex space $X$ and for an arbitrary direction $h\in X$: either $\mu$ is differentiable in the direction $h$ in the sense of Skorokhod and $\|\mu _h-\mu \|\geqslant 2-2e^{-\frac 12\|d_h\mu \|}$, or $\mu$ and $\mu _{th}$ are mutually singular for all $t\in \mathbb R\setminus \{0\}$.
@article{SM_1997_188_2_a2,
     author = {E. P. Krugova},
     title = {On translates of convex measures},
     journal = {Sbornik. Mathematics},
     pages = {227--236},
     publisher = {mathdoc},
     volume = {188},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/}
}
TY  - JOUR
AU  - E. P. Krugova
TI  - On translates of convex measures
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 227
EP  - 236
VL  - 188
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/
LA  - en
ID  - SM_1997_188_2_a2
ER  - 
%0 Journal Article
%A E. P. Krugova
%T On translates of convex measures
%J Sbornik. Mathematics
%D 1997
%P 227-236
%V 188
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/
%G en
%F SM_1997_188_2_a2
E. P. Krugova. On translates of convex measures. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 227-236. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/