On translates of convex measures
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 227-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following alternative is proved for a convex Radon measure $\mu$, on a locally convex space $X$ and for an arbitrary direction $h\in X$: either $\mu$ is differentiable in the direction $h$ in the sense of Skorokhod and $\|\mu _h-\mu \|\geqslant 2-2e^{-\frac 12\|d_h\mu \|}$, or $\mu$ and $\mu _{th}$ are mutually singular for all $t\in \mathbb R\setminus \{0\}$.
@article{SM_1997_188_2_a2,
     author = {E. P. Krugova},
     title = {On translates of convex measures},
     journal = {Sbornik. Mathematics},
     pages = {227--236},
     year = {1997},
     volume = {188},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/}
}
TY  - JOUR
AU  - E. P. Krugova
TI  - On translates of convex measures
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 227
EP  - 236
VL  - 188
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/
LA  - en
ID  - SM_1997_188_2_a2
ER  - 
%0 Journal Article
%A E. P. Krugova
%T On translates of convex measures
%J Sbornik. Mathematics
%D 1997
%P 227-236
%V 188
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/
%G en
%F SM_1997_188_2_a2
E. P. Krugova. On translates of convex measures. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 227-236. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/

[1] Albeverio S., Kondratiev Yu. G., Röckner M., “Dirichlet operators via stochastic analysis”, J. Funct. Anal., 128 (1995), 102–138 | DOI | MR | Zbl

[2] Antonjuk A. V., Kondratiev Yu. G., Log-concave smooth measures on Hilbert spaces and some properties of the corresponding Dirichlet operators, BiBos Preprint No 478, 1991

[3] Bogachev V. I., “O differentsiruemosti mer v smysle Skorokhoda”, Teoriya veroyatn. i ee prim., 33:2 (1988), 349–354 | MR | Zbl

[4] Bogachev V. I., “Gaussovskie mery na lineinykh prostranstvakh”, Analiz – 8, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 16, VINITI, M., 1994 | MR

[5] Bogachev V. I., Smolyanov O. G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, UMN, 45:3 (1990), 3–83 | MR | Zbl

[6] Borell C., “Convex measures on locally convex spaces”, Ark. Mat., 12:2 (1974), 239–252 | DOI | MR | Zbl

[7] Brascamp H. J, Lieb E. H., “On extensions of the Brunn–Minkowski and Prekopa–Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation”, J. Funct. Anal., 22:4 (1976), 366–389 | DOI | MR | Zbl

[8] Krugova E. P., “Differentsiruemost vypuklykh mer”, Matem. zametki, 58:6 (1995), 862–871 | MR | Zbl

[9] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[10] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[11] Ziemer W. P., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Springer-Verlag, New York, 1989 | MR