On translates of convex measures
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 227-236
Voir la notice de l'article provenant de la source Math-Net.Ru
The following alternative is proved for a convex Radon measure $\mu$, on a locally convex space $X$ and for an arbitrary direction $h\in X$: either $\mu$ is differentiable in the direction $h$ in the sense of Skorokhod and $\|\mu _h-\mu \|\geqslant 2-2e^{-\frac 12\|d_h\mu \|}$,
or $\mu$ and $\mu _{th}$ are mutually singular for all $t\in \mathbb R\setminus \{0\}$.
@article{SM_1997_188_2_a2,
author = {E. P. Krugova},
title = {On translates of convex measures},
journal = {Sbornik. Mathematics},
pages = {227--236},
publisher = {mathdoc},
volume = {188},
number = {2},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/}
}
E. P. Krugova. On translates of convex measures. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 227-236. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a2/