The fundamental principle for invariant subspaces of analytic functions.~I
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 195-226
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $W$ be a differentiation-invariant subspace of the topological product $H=H(G_1)\times \dots \times H(G_q)$ of the spaces of analytic functions in domains $G_1,\dots ,G_q$ in $\mathbb C$, respectively. Under certain assumptions there exists a sequence of complex numbers $\{\lambda _i\}$, $i=1,2,\dots$, and projection operators $p_i\colon W \to W(\lambda _i)$ onto the root subspaces $W(\lambda _i)\subset W$ corresponding to the eigenvalues $\lambda _i$ of the differentiation operator. This enables one to associate with each element $f\in W$ the formal series $f\backsim \sum p_i(f)$. The fundamental principle is the phenomenon of the convergence of this series to the corresponding element $f$ for each $f$ in $W$. The existence of the projections $p_i$ depends on a particular property of the annihilator submodule of $W$: its stability with respect to division by binomials $z-\lambda$. Stability questions arising in establishing the fundamental principle are considered.
@article{SM_1997_188_2_a1, author = {I. F. Krasichkov-Ternovskii}, title = {The fundamental principle for invariant subspaces of analytic {functions.~I}}, journal = {Sbornik. Mathematics}, pages = {195--226}, publisher = {mathdoc}, volume = {188}, number = {2}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a1/} }
I. F. Krasichkov-Ternovskii. The fundamental principle for invariant subspaces of analytic functions.~I. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 195-226. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a1/