@article{SM_1997_188_2_a0,
author = {Kim Ann Chi and A. I. Kostrikin},
title = {Certain balanced groups and 3-manifolds},
journal = {Sbornik. Mathematics},
pages = {173--194},
year = {1997},
volume = {188},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a0/}
}
Kim Ann Chi; A. I. Kostrikin. Certain balanced groups and 3-manifolds. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 173-194. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a0/
[1] Hempel J., $3$-manifolds, Ann. of Math. Stud., 86, Prinseton Univ. Press, Prineston, 1976 | MR | Zbl
[2] Holt D. F., Plesken W., “A cohomological criterion for a finitely presented group to be infinite”, J. London Math. Soc., 45:2 (1992), 469–480 | DOI | MR | Zbl
[3] Kim A. Ch., Kostrikin A. I., “Tri serii $3$-mnogoobrazii i ikh fundamentalnye gruppy”, Dokl. AN, 340:2 (1995), 158–160 | MR | Zbl
[4] Mennicke J., “Über Heegaarddiagramme von Geschlecht zwei mit endlicher Fundamentalgruppe”, Arch. Math. (Basel), 8 (1957), 192–198 | MR | Zbl
[5] Mennike I., Konechnye fundamentalnye gruppy trekhmernykh mnogoobrazii, Preprint, MIRAN, M., 1994, p. 1–15
[6] Milnor J., “Groups which act on $S^n$ without fixed points”, Amer. J. Math., 79 (1957), 623–630 | DOI | MR | Zbl
[7] Reidemeister K., “Kommutative Fundamentalgruppen”, Monatsh. Math. Phys., 43:1 (1935), 20–28 | DOI | MR
[8] Seifert H., Threlfall W., Lehrbuch der Topologie, Teubner, Leipzig, 1934 | Zbl
[9] Seifert H., Threlfall W., “Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bevegungsgruppen des dreidimensionalen sphärischen Raumes”, Math. Ann., 104 (1930–1931), 1–70 | MR | Zbl
[10] Wilson J. S., Zelmanov E. I., “Identities for Lie algebras of pro-$p$-groups”, J. Pure Appl. Algebra, 81 (1992), 103–109 | DOI | MR | Zbl