Certain balanced groups and 3-manifolds
Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 173-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Five series of groups with finite presentations are constructed. Their definition is based on the construction of some closed, compact, orientable 3-manifolds, so that these groups are balanced. The derived quotients of the groups are described. Almost all these groups are proved to be infinite; moreover, the linear groups $\operatorname {SL}(2,F)$ with $|F:{\mathbb Q}|\leqslant 6$ are involved in many of them. The relevant arguments are elementary, but the results obtained on balanced groups will be useful in further studies of 3-manifolds.
@article{SM_1997_188_2_a0,
     author = {Kim Ann Chi and A. I. Kostrikin},
     title = {Certain balanced groups and 3-manifolds},
     journal = {Sbornik. Mathematics},
     pages = {173--194},
     publisher = {mathdoc},
     volume = {188},
     number = {2},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_2_a0/}
}
TY  - JOUR
AU  - Kim Ann Chi
AU  - A. I. Kostrikin
TI  - Certain balanced groups and 3-manifolds
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 173
EP  - 194
VL  - 188
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_2_a0/
LA  - en
ID  - SM_1997_188_2_a0
ER  - 
%0 Journal Article
%A Kim Ann Chi
%A A. I. Kostrikin
%T Certain balanced groups and 3-manifolds
%J Sbornik. Mathematics
%D 1997
%P 173-194
%V 188
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_2_a0/
%G en
%F SM_1997_188_2_a0
Kim Ann Chi; A. I. Kostrikin. Certain balanced groups and 3-manifolds. Sbornik. Mathematics, Tome 188 (1997) no. 2, pp. 173-194. http://geodesic.mathdoc.fr/item/SM_1997_188_2_a0/