Universally optimal wavelets
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 157-171

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete description of wavelet bases generated by a fixed function whose Fourier transform is the characteristic function of a set is presented. In particular, for the case of Sobolev spaces, wavelet bases are constructed possessing the following property of universal optimality: the subspaces generated by these functions are extremal for projection lattice widths (in the univariate case also for Kolmogorov widths) of the unit ball in $W^m_2(E_n)$ in the metric of $W^s_2(E_n)$ simultaneously for the whole scale of Sobolev classes (that is, for all $s,m\in E_1$, such that $s$). En route, certain results concerning completeness and the basis property of systems of exponentials are established.
@article{SM_1997_188_1_a7,
     author = {N. A. Strelkov},
     title = {Universally optimal wavelets},
     journal = {Sbornik. Mathematics},
     pages = {157--171},
     publisher = {mathdoc},
     volume = {188},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a7/}
}
TY  - JOUR
AU  - N. A. Strelkov
TI  - Universally optimal wavelets
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 157
EP  - 171
VL  - 188
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a7/
LA  - en
ID  - SM_1997_188_1_a7
ER  - 
%0 Journal Article
%A N. A. Strelkov
%T Universally optimal wavelets
%J Sbornik. Mathematics
%D 1997
%P 157-171
%V 188
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a7/
%G en
%F SM_1997_188_1_a7
N. A. Strelkov. Universally optimal wavelets. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 157-171. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a7/