Universally optimal wavelets
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 157-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A complete description of wavelet bases generated by a fixed function whose Fourier transform is the characteristic function of a set is presented. In particular, for the case of Sobolev spaces, wavelet bases are constructed possessing the following property of universal optimality: the subspaces generated by these functions are extremal for projection lattice widths (in the univariate case also for Kolmogorov widths) of the unit ball in $W^m_2(E_n)$ in the metric of $W^s_2(E_n)$ simultaneously for the whole scale of Sobolev classes (that is, for all $s,m\in E_1$, such that $s). En route, certain results concerning completeness and the basis property of systems of exponentials are established.
@article{SM_1997_188_1_a7,
     author = {N. A. Strelkov},
     title = {Universally optimal wavelets},
     journal = {Sbornik. Mathematics},
     pages = {157--171},
     year = {1997},
     volume = {188},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a7/}
}
TY  - JOUR
AU  - N. A. Strelkov
TI  - Universally optimal wavelets
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 157
EP  - 171
VL  - 188
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a7/
LA  - en
ID  - SM_1997_188_1_a7
ER  - 
%0 Journal Article
%A N. A. Strelkov
%T Universally optimal wavelets
%J Sbornik. Mathematics
%D 1997
%P 157-171
%V 188
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a7/
%G en
%F SM_1997_188_1_a7
N. A. Strelkov. Universally optimal wavelets. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 157-171. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a7/

[1] Khermander L., “Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi”, Differentsialnye operatory s postoyannymi koeffitsientami, T. 2, Mir, M., 1988 | MR

[2] Volevich L. R., Paneyakh B. P., “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, UMN, 20:1 (1965), 3–74 | MR | Zbl

[3] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[4] Kassels Dzh., Vvedenie v geometriyu chisel, Mir, M., 1965 | MR

[5] Mallat S. G., “Multiresolution approximations and wavelet orthonormal bases of $L^2(R)$”, Trans. Amer. Math. Soc., 315:1 (1989), 69–87 | DOI | MR | Zbl

[6] Daubechies I., “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl

[7] Din Zung, Magaril-Ilyaev G. G., “Zadachi tipa Bernshteina i Favara i srednyaya $\varepsilon$-razmernost nekotorykh klassov funktsii”, Dokl. AN SSSR, 249:4 (1979), 783–786 | MR | Zbl

[8] Strelkov N. A., “Proektsionno-setochnye poperechniki i reshetchatye ukladki”, Matem. sb., 182:10 (1991), 1513–1533 | MR

[9] Strelkov N. A., Analiz Fure proektsionno-setochnykh approksimatsii, Dis. $\dots$ dokt. fiz.-matem. nauk, YarGU, Yaroslavl, 1993

[10] Goncharov A., “Reshetki i zony Brillyuena”, Kvant, 1995, no. 1, 15–17