Non-selfadjoint singular perturbations and spectral properties of the Orr–Sommerfeld boundary-value problem
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 137-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach to the analysis of the asymptotic behaviour (and in particular, of the degree of non-orthogonality) of the eigenfunctions and associated functions of non-selfadjoint singularly perturbed operators and boundary-value problems is suggested; the main attention is paid to the case when the spectrum fails to be lower semicontinuous under singular perturbations. As a model case of the transition from a discrete to a continuous spectrum a Sturm–Liouville problem with a small parameter multiplying the second derivative is considered. Spectrum localization is studied and the growth of the degree of non-orthogonality of the system of eigenfunctions and associated functions of the Orr–Sommerfeld problem as the viscosity vanishes is established.
@article{SM_1997_188_1_a6,
     author = {S. A. Stepin},
     title = {Non-selfadjoint singular perturbations and spectral properties of {the~Orr{\textendash}Sommerfeld} boundary-value problem},
     journal = {Sbornik. Mathematics},
     pages = {137--156},
     year = {1997},
     volume = {188},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a6/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Non-selfadjoint singular perturbations and spectral properties of the Orr–Sommerfeld boundary-value problem
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 137
EP  - 156
VL  - 188
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a6/
LA  - en
ID  - SM_1997_188_1_a6
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Non-selfadjoint singular perturbations and spectral properties of the Orr–Sommerfeld boundary-value problem
%J Sbornik. Mathematics
%D 1997
%P 137-156
%V 188
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a6/
%G en
%F SM_1997_188_1_a6
S. A. Stepin. Non-selfadjoint singular perturbations and spectral properties of the Orr–Sommerfeld boundary-value problem. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 137-156. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a6/

[1] Friedrichs K. O., “Asymptotic phenomena in mathematical physics”, Bull. Amer. Math. Soc., 61 (1955), 485–504 | DOI | MR | Zbl

[2] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[3] Lin Ts. Ts., Teoriya gidrodinamicheskoi ustoichivosti, IL, M., 1958

[4] DiPrima R. C., Habetler G. J., “A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability”, Arch. Rational Mech. Anal., 34 (1968), 218–227 | MR

[5] Faddeev L. D., “K teorii ustoichivosti statsionarnykh ploskoparallelnykh techenii idealnoi zhidkosti”, Zapiski nauch. sem. LOMI, 21, Nauka, L., 1971, 164–172 | MR | Zbl

[6] Maslov V. P., “Teoriya vozmuschenii pri perekhode ot diskretnogo spektra k nepreryvnomu”, Dokl. AN SSSR, 109:2 (1956), 267–270 | MR | Zbl

[7] Moser J., “Singular perturbation of eigenvalue problems for linear differential equation of even order”, Comm. Pure Appl. Math., 8 (1955), 251–278 | DOI | MR | Zbl

[8] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[9] Mikhailov V. P., “O bazisakh Rissa v $L^2(0,1)$”, Dokl. AN SSSR, 144:5 (1962), 981–984 | MR

[10] Shkalikov A. A., Tretter C., “Kamke problems. Properties of the eigenfunctions”, Math. Nachr., 170 (1994), 251–275 | MR

[11] Stepin S. A., “Nesamosopryazhennye singulyarnye vozmuscheniya: model perekhoda ot diskretnogo spektra k nepreryvnomu”, UMN, 50:6 (1995), 219–220 | MR | Zbl

[12] Olver F., Asimptotika i spetsialnye funktsii, Mir, M., 1990 | MR

[13] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR | Zbl

[14] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR

[15] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[16] Agranovich M. S., “O ryadakh po kornevym vektoram operatorov, opredelyaemykh formami s samosopryazhennoi glavnoi chastyu”, Funkts. analiz i ego pril., 28:3 (1994), 1–21 | MR | Zbl

[17] Greenlee W. M., “Stability theorems for singular perturbation of eigenvalues”, Manuscripta Math., 34:2–3 (1981), 157–174 | DOI | MR | Zbl

[18] Markus A. S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[19] Lidskii V. B., Sadovnichii V. A., “Formuly sledov v sluchae uravneniya Orra–Zommerfelda”, Izv. AN SSSR. Ser. matem., 32:3 (1968), 633–648 | MR | Zbl

[20] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[21] Wasow W., “The complex asymptotic theory of a fourth order differential equation of hydrodynamics”, Ann. of Math., 49:4 (1948), 852–871 | DOI | MR | Zbl

[22] Dikii L. A., Gidrodinamicheskaya ustoichivost i dinamika atmosfery, Gidrometeoizdat, L., 1976

[23] Keselman G. M., “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matematika, 1964, no. 2, 82–93 | MR | Zbl

[24] Shkalikov A. A., “O bazisnosti sobstvennykh funktsii obyknovennogo differentsialnogo operatora”, UMN, 34:5 (1979), 235–236 | MR | Zbl

[25] Stepin S. A., “O spektralnykh svoistvakh zadachi Orra–Zommerfelda pri ischezayuschei vyazkosti”, Funkts. analiz i ego pril., 30:4 (1996), 88–91 | MR | Zbl