Non-selfadjoint singular perturbations and spectral properties of the~Orr--Sommerfeld boundary-value problem
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 137-156
Voir la notice de l'article provenant de la source Math-Net.Ru
A new approach to the analysis of the asymptotic behaviour (and in particular, of the degree of non-orthogonality) of the eigenfunctions and associated functions of non-selfadjoint singularly perturbed operators and boundary-value problems is suggested; the main attention is paid to the case when the spectrum fails to be lower semicontinuous under singular perturbations. As a model case of the transition from a discrete to a continuous spectrum a Sturm–Liouville problem with a small parameter multiplying the second derivative is considered. Spectrum localization is studied and the growth of the degree of non-orthogonality of the system of eigenfunctions and associated functions of the Orr–Sommerfeld problem as the viscosity vanishes is established.
@article{SM_1997_188_1_a6,
author = {S. A. Stepin},
title = {Non-selfadjoint singular perturbations and spectral properties of {the~Orr--Sommerfeld} boundary-value problem},
journal = {Sbornik. Mathematics},
pages = {137--156},
publisher = {mathdoc},
volume = {188},
number = {1},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a6/}
}
TY - JOUR AU - S. A. Stepin TI - Non-selfadjoint singular perturbations and spectral properties of the~Orr--Sommerfeld boundary-value problem JO - Sbornik. Mathematics PY - 1997 SP - 137 EP - 156 VL - 188 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a6/ LA - en ID - SM_1997_188_1_a6 ER -
S. A. Stepin. Non-selfadjoint singular perturbations and spectral properties of the~Orr--Sommerfeld boundary-value problem. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 137-156. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a6/