On a class of elliptic potentials of the~Dirac operator
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 115-135
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that there exists a class of finite-gap potentials of the Dirac operator and finite-gap solutions of the 'decomposed' non-linear Schrödinger equation which are single-valued meromorphic functions of $x$. It is also shown that the evolution of the poles $x_j(t)$ of these elliptic solutions satisfies the dynamics of the Calogero–Moser system
@article{SM_1997_188_1_a5,
author = {A. O. Smirnov},
title = {On a class of elliptic potentials of {the~Dirac} operator},
journal = {Sbornik. Mathematics},
pages = {115--135},
publisher = {mathdoc},
volume = {188},
number = {1},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/}
}
A. O. Smirnov. On a class of elliptic potentials of the~Dirac operator. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 115-135. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/