On a class of elliptic potentials of the Dirac operator
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 115-135
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that there exists a class of finite-gap potentials of the Dirac operator and finite-gap solutions of the 'decomposed' non-linear Schrödinger equation which are single-valued meromorphic functions of $x$. It is also shown that the evolution of the poles $x_j(t)$ of these elliptic solutions satisfies the dynamics of the Calogero–Moser system
@article{SM_1997_188_1_a5,
     author = {A. O. Smirnov},
     title = {On a class of elliptic potentials of {the~Dirac} operator},
     journal = {Sbornik. Mathematics},
     pages = {115--135},
     year = {1997},
     volume = {188},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/}
}
TY  - JOUR
AU  - A. O. Smirnov
TI  - On a class of elliptic potentials of the Dirac operator
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 115
EP  - 135
VL  - 188
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/
LA  - en
ID  - SM_1997_188_1_a5
ER  - 
%0 Journal Article
%A A. O. Smirnov
%T On a class of elliptic potentials of the Dirac operator
%J Sbornik. Mathematics
%D 1997
%P 115-135
%V 188
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/
%G en
%F SM_1997_188_1_a5
A. O. Smirnov. On a class of elliptic potentials of the Dirac operator. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 115-135. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/

[1] Dubrovin B. A., Novikov S. P., “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, ZhETF, 67:12 (1974), 2131–2143 | MR

[2] Airault H., McKean H. P., Moser J., “Rational and elliptic solutions of the KdV equation”, Comm. Pure Appl. Math., 30 (1977), 95–148 | DOI | MR | Zbl

[3] Krichever I. M., “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funktsion. analiz i ego pril., 14:4 (1980), 45–54 | MR | Zbl

[4] Its A. R., Enolskii V. Z., “O dinamike sistemy Kalodzhero–Mozera i reduktsii giperellipticheskikh integralov k ellipticheskim integralam”, Funktsion. analiz i ego pril., 20:1 (1986), 73–74 | MR | Zbl

[5] Eilbeck J. C., Enol'skii V. Z., “Elliptic Baker–Akhiezer functions and application to an integrable dynamical system”, J. Math. Phys., 35:3 (1994), 1192–1201 | DOI | MR | Zbl

[6] Perelomov A. M., Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | Zbl

[7] Belokolos E. D., Bobenko A. I., Matveev V. B., Enolskii V. Z., “Algebrogeometricheskie printsipy superpozitsii konechnozonnykh reshenii integriruemykh nelineinykh uravnenii”, UMN, 41:2 (1986), 3–42 | MR | Zbl

[8] Belokolos E. D., Enolskii V. Z., “Izospektralnye deformatsii ellipticheskikh potentsialov”, UMN, 44:5 (1989), 155–156 | MR | Zbl

[9] Belokolos E. D., Enolskii V. Z., “Ellipticheskie solitony Verde i teoriya reduktsii Veiershtrassa”, Funktsion. analiz i ego pril., 23:1 (1989), 57–58 | MR | Zbl

[10] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometrical approach to nonlinear evolution equations, Springer Ser. Nonlinear Dynam., 1994

[11] Smirnov A. O., “Operator Diraka s ellipticheskim potentsialom”, Matem. sb., 186:8 (1995), 134–141 | MR

[12] Gerdt V. P., Kostov N. A., “Computer algebra in the theory of ordinary differential equations of Halphen type”, Computers and Mathematics, eds. E. Kaltofen, S. M. Watt, Springer-Verlag, Berlin, 1989, 277–283 | MR

[13] Enol'skii V. Z., Kostov N. A., “On the geometry of elliptic solitons”, Acta Appl. Math., 36 (1994), 57–86 | DOI | MR | Zbl

[14] Brezhnev Yu. V., “Darboux transformation and some multi-phase solutions of the Dodd–Bullough–Tzitzeica equation: $U_{xt}=e^U-e^{-2U}$”, Phys. Lett. A, 211 (1996), 94–100 | DOI | MR | Zbl

[15] Smirnov A. O., “Ellipticheskie resheniya uravneniya Kortevega–de Friza”, Matem. zametki, 45:6 (1989), 66–73 | MR | Zbl

[16] Smirnov A. O., “Ellipticheskie resheniya integriruemykh nelineinykh uravnenii”, Matem. zametki, 46:5 (1989), 100–102 | MR | Zbl

[17] Smirnov A. O., “Ellipticheskie po $t$ resheniya uravneniya KdF”, TMF, 100:2 (1994), 183–198 | MR | Zbl

[18] Smirnov A. O., “Finite-gap elliptic solutions of the KdV equation”, Acta Appl. Math., 36 (1994), 125–166 | DOI | MR | Zbl

[19] Smirnov A. O., “Dvukhzonnye ellipticheskie resheniya integriruemykh nelineinykh uravnenii”, Matem. zametki, 58:1 (1995), 86–97 | MR | Zbl

[20] Smirnov A. O., “Veschestvennye ellipticheskie resheniya uravneniya “sine-Gordon””, Matem. sb., 181:6 (1990), 804–812 | Zbl

[21] Smirnov A. O., “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza”, Matem. sb., 185:8 (1994), 103–114 | Zbl

[22] Smirnov A. O., “Ellipticheskie po $t$ resheniya nelineinogo uravneniya Shredingera”, TMF, 107:2 (1996), 188–200 | MR | Zbl

[23] Gesztesy F., Weikard R., On Picard potentials, Preprint, 1994 | MR

[24] Gesztesy F., Weikard R., Picard potentials and Hill's equation on torus, Preprint, 1994 | MR

[25] Gesztesy F., Weikard R., Lamé potentials and the stationary (m)KdV hierarchy, Preprint, 1994 | MR

[26] Gesztesy F., Weikard R., Treibich–Verdier potentials and the stationary (m)KdV hierarchy, Preprint, 1994 | MR

[27] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[28] Its A. R., “Obraschenie giperellipticheskikh integralov i integrirovanie nelineinykh differentsialnykh uravnenii”, Vestnik LGU. Ser. Matem.–mekh.–astr., 7:2 (1976), 39–46 | MR | Zbl

[29] Its A. R., Kotlyarov V. P., “Ob odnom klasse reshenii nelineinogo uravneniya Shredingera”, DAN USSR. Ser. A, 1976, no. 11, 965–968 | MR | Zbl

[30] Its A. R., Tochnoe integrirovanie v rimanovykh $\Theta$-funktsiyakh nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega–de Friza, Dis. $\dots$ kand. fiz.-matem. nauk, LGU, L., 1977

[31] Matveev V. B., Abelian functions and solitons, Preprint No 373, Univ. of Wrocław, 1976

[32] Krazer A., Lehrbuch der Thetafunktionen, Teubner, Leipzig, 1903 | Zbl

[33] Zverovich E. I., “Kraevye zadachi teorii analiticheskikh funktsii v gelderovskikh klassakh na rimanovykh poverkhnostyakh”, UMN, 26:1 (1971), 113–179 | MR | Zbl

[34] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, UMN, 36:2 (1981), 11–80 | MR | Zbl

[35] Mamford D., Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[36] Babich M. V., Bobenko A. I., Matveev V. B., “Reduktsii mnogomernykh teta-funktsii i simmetrii algebraicheskikh krivykh”, DAN SSSR, 272:1 (1983), 13–17 | MR | Zbl

[37] Babich M. V., Bobenko A. I., Matveev V. B., “Resheniya nelineinykh uravnenii, integriruemykh metodom obratnoi zadachi, v teta-funktsiyakh Yakobi i simmetrii algebraicheskikh krivykh”, Izv. AN SSSR. Ser. matem., 49:3 (1985), 511–529 | MR | Zbl

[38] Choodnovsky D. V., “Meromorphic solutions of nonlinear partial differential equations and particle integrable systems”, J. Math. Phys., 20:12 (1979), 2416–2424 | DOI | MR