On a class of elliptic potentials of the~Dirac operator
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 115-135

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that there exists a class of finite-gap potentials of the Dirac operator and finite-gap solutions of the 'decomposed' non-linear Schrödinger equation which are single-valued meromorphic functions of $x$. It is also shown that the evolution of the poles $x_j(t)$ of these elliptic solutions satisfies the dynamics of the Calogero–Moser system
@article{SM_1997_188_1_a5,
     author = {A. O. Smirnov},
     title = {On a class of elliptic potentials of {the~Dirac} operator},
     journal = {Sbornik. Mathematics},
     pages = {115--135},
     publisher = {mathdoc},
     volume = {188},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/}
}
TY  - JOUR
AU  - A. O. Smirnov
TI  - On a class of elliptic potentials of the~Dirac operator
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 115
EP  - 135
VL  - 188
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/
LA  - en
ID  - SM_1997_188_1_a5
ER  - 
%0 Journal Article
%A A. O. Smirnov
%T On a class of elliptic potentials of the~Dirac operator
%J Sbornik. Mathematics
%D 1997
%P 115-135
%V 188
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/
%G en
%F SM_1997_188_1_a5
A. O. Smirnov. On a class of elliptic potentials of the~Dirac operator. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 115-135. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a5/