An approximation scheme for measure-valued solutions of a first-order quasilinear equation
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 87-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A kinetic definition of a measure-valued solution of the Cauchy problem for a first-order quasilinear equation is presented. Using a suitable approximation of the right-hand side of the corresponding kinetic equation a family of equations is constructed. The unique solubility of Cauchy problems for these equations and the convergence (after possibly going over to a subsequence) of the resulting sequence of solutions to a generalized solution of the original problem are established.
@article{SM_1997_188_1_a4,
     author = {E. Yu. Panov},
     title = {An approximation scheme for measure-valued solutions of a~first-order quasilinear equation},
     journal = {Sbornik. Mathematics},
     pages = {87--113},
     year = {1997},
     volume = {188},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a4/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - An approximation scheme for measure-valued solutions of a first-order quasilinear equation
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 87
EP  - 113
VL  - 188
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a4/
LA  - en
ID  - SM_1997_188_1_a4
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T An approximation scheme for measure-valued solutions of a first-order quasilinear equation
%J Sbornik. Mathematics
%D 1997
%P 87-113
%V 188
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a4/
%G en
%F SM_1997_188_1_a4
E. Yu. Panov. An approximation scheme for measure-valued solutions of a first-order quasilinear equation. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 87-113. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a4/

[1] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, DAN SSSR, 187:1 (1969), 29–32 | Zbl

[2] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl

[3] Lions P. L., Perthame B., Tadmor E., “A kinetic formulation of multidimensional scalar conservation laws and related equations”, J. Amer. Math. Soc., 7:1 (1994), 169–191 | DOI | MR | Zbl

[4] Tartar L., “Compensated compactness and applications to partial differential equations”, Research notes in mathematics, nonlinear analysis, and mechanics, Heriot-Watt Symposium, V. 4, 1979, 136–212 | MR | Zbl

[5] DiPerna R. J., Generalized solutions to conservation laws, in system of nonlinear partial differential equations, NATO ASI Series, ed. J. M. Ball, D. Reidel Pub. Co., 1983

[6] DiPerna R. J., “Measure-valued solutions to conservation laws”, Arch. Rational Mech. Anal., 88 (1985), 223–270 | DOI | MR | Zbl

[7] Panov E. Yu., Obobschennye resheniya zadachi Koshi dlya kvazilineinykh zakonov sokhraneniya, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1991

[8] Panov E. Yu., “Silnye meroznachnye resheniya zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka s ogranichennoi meroznachnoi nachalnoi funktsiei”, Vestn. MGU. Ser. 1. Matem, mekh., 1993, no. 1, 20–23 | MR | Zbl

[9] Panov E. Yu., “O meroznachnykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Izv. RAN. Ser. matem., 60:2 (1996), 107–148 | MR | Zbl

[10] Panov E. Yu., “O posledovatelnostyakh meroznachnykh reshenii kvazilineinogo uravneniya pervogo poryadka”, Matem. sb., 185:2 (1994), 87–106 | Zbl

[11] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, M., 1957 | MR

[12] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948