On the connection generated by the~problem of minimizing a~multiple integral
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 61-74

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Dirichlet integral, a functional which depends quadratically on the sections of a vector bundle $\pi \colon \xi \to \mathfrak N$ over a smooth manifold $\mathfrak N$. We obtain and investigate a quadratic system of partial differential equations, called the Riccati equation by analogy with the one-dimensional case. We show that the solutions of this system define a connection $\nabla$ on the bundle $\xi$. A field of extremals for the Dirichlet functional exists if and only if there is a solution of the Riccati equation that defines a flat connection. The existence of a globally defined solution of the Riccati equation satisfying certain additional conditions guarantees that the Dirichlet functional is positive-definite.
@article{SM_1997_188_1_a2,
     author = {M. I. Zelikin},
     title = {On the connection generated by the~problem of minimizing a~multiple integral},
     journal = {Sbornik. Mathematics},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {188},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a2/}
}
TY  - JOUR
AU  - M. I. Zelikin
TI  - On the connection generated by the~problem of minimizing a~multiple integral
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 61
EP  - 74
VL  - 188
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a2/
LA  - en
ID  - SM_1997_188_1_a2
ER  - 
%0 Journal Article
%A M. I. Zelikin
%T On the connection generated by the~problem of minimizing a~multiple integral
%J Sbornik. Mathematics
%D 1997
%P 61-74
%V 188
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a2/
%G en
%F SM_1997_188_1_a2
M. I. Zelikin. On the connection generated by the~problem of minimizing a~multiple integral. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 61-74. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a2/