Spherical partial sums of the~double Fourier series of functions of bounded generalized variation
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 29-60
Voir la notice de l'article provenant de la source Math-Net.Ru
The spherical partial sums of the double Fourier series of functions in the Waterman classes are studied. The main result of the paper is as follows.
Theorem 1.
{\it Let
$\Lambda_\varepsilon
=\biggl\{\dfrac{n^{3/4}}{(\ln(n+1))^{1/2+\varepsilon}}\biggr\}_{n=1}^\infty$ for
$\varepsilon>0$. Let
$f(x,y)\in\Lambda_\varepsilon BV(T^2)$ and let
\begin{align*}
I_r(f)=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}J_r(f)
\\
=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}\sum_{r-1|(m,n)|\leqslant r+1}|a_{m,n}(\psi_{x,y,u,v})|\leqslant C
\end{align*}
for $r\geqslant 1$, where
$$
\psi _{x,y,u,v}(s,t)=\psi (s,t)=f(x+t,y+s)w(t)w(s)e^{-i(tu+sv)}, \quad and\quad
w(\tau)=\frac\tau{2\sin(\theta/2)}\,.
$$
Then
$$
\sup_{R\geqslant 1}\sup _{(x,y)\in T^2}|S_R(f,x,y)|\leqslant C(f,\varepsilon).
$$
for each $R\geqslant 1$.}
Problem of circular convergence of Fourier series of the characteristic function of plane convex sets are also considered.
@article{SM_1997_188_1_a1,
author = {M. I. Dyachenko},
title = {Spherical partial sums of the~double {Fourier} series of functions of bounded generalized variation},
journal = {Sbornik. Mathematics},
pages = {29--60},
publisher = {mathdoc},
volume = {188},
number = {1},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/}
}
TY - JOUR AU - M. I. Dyachenko TI - Spherical partial sums of the~double Fourier series of functions of bounded generalized variation JO - Sbornik. Mathematics PY - 1997 SP - 29 EP - 60 VL - 188 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/ LA - en ID - SM_1997_188_1_a1 ER -
M. I. Dyachenko. Spherical partial sums of the~double Fourier series of functions of bounded generalized variation. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 29-60. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/