Spherical partial sums of the double Fourier series of functions of bounded generalized variation
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 29-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spherical partial sums of the double Fourier series of functions in the Waterman classes are studied. The main result of the paper is as follows. Theorem 1. {\it Let $\Lambda_\varepsilon =\biggl\{\dfrac{n^{3/4}}{(\ln(n+1))^{1/2+\varepsilon}}\biggr\}_{n=1}^\infty$ for $\varepsilon>0$. Let $f(x,y)\in\Lambda_\varepsilon BV(T^2)$ and let \begin{align*} I_r(f)&=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}J_r(f) \\ &=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}\sum_{r-1<|(m,n)|\leqslant r+1}|a_{m,n}(\psi_{x,y,u,v})|\leqslant C \end{align*} for $r\geqslant 1$, where $$ \psi _{x,y,u,v}(s,t)=\psi (s,t)=f(x+t,y+s)w(t)w(s)e^{-i(tu+sv)}, \quad and\quad w(\tau)=\frac\tau{2\sin(\theta/2)}\,. $$ Then $$ \sup_{R\geqslant 1}\sup _{(x,y)\in T^2}|S_R(f,x,y)|\leqslant C(f,\varepsilon). $$ for each $R\geqslant 1$.} Problem of circular convergence of Fourier series of the characteristic function of plane convex sets are also considered.
@article{SM_1997_188_1_a1,
     author = {M. I. Dyachenko},
     title = {Spherical partial sums of the~double {Fourier} series of functions of bounded generalized variation},
     journal = {Sbornik. Mathematics},
     pages = {29--60},
     year = {1997},
     volume = {188},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - Spherical partial sums of the double Fourier series of functions of bounded generalized variation
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 29
EP  - 60
VL  - 188
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/
LA  - en
ID  - SM_1997_188_1_a1
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T Spherical partial sums of the double Fourier series of functions of bounded generalized variation
%J Sbornik. Mathematics
%D 1997
%P 29-60
%V 188
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/
%G en
%F SM_1997_188_1_a1
M. I. Dyachenko. Spherical partial sums of the double Fourier series of functions of bounded generalized variation. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 29-60. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/

[1] Waterman D., “On convergence of Fourier series of functions of bounded generalized variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl

[2] Chandrasekharan K., Minaksisundaram S., “Some results on double Fourier series”, Duke Math. J., 14:3 (1947), 731–753 | DOI | MR | Zbl

[3] Golubov B. I., “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov i integralov Fure ot funktsii ogranichennoi obobschennoi variatsii”, Matem. sb., 89:4 (1972), 630–653 | MR | Zbl

[4] Dyachenko M. I., “Nekotorye problemy teorii kratnykh ryadov Fure”, UMN, 47:5 (1992), 97–162 | MR | Zbl

[5] Dyachenko M. I., “Waterman classes and spherical partial sums of double Fourier series”, Anal. Math., 21:1 (1995), 3–21 | DOI | MR | Zbl

[6] Yudin V. A., “Povedenie konstant Lebega”, Matem. zametki, 17:3 (1975), 401–405 | MR | Zbl

[7] Alimov Sh. A., Ilin V. A., “Usloviya skhodimosti spektralnykh razlozhenii, sootvetstvuyuschikh samosopryazhennym rasshireniyam ellipticheskikh operatorov, 1”, Differents. uravneniya, 7:4 (1971), 670–710 | MR | Zbl

[8] Dyachenko M. I., “Vypuklye mnozhestva i kratnye ryady Fure”, Tr. MIAN, 200, Nauka, M., 1991, 147–156 | MR | Zbl

[9] Stein E. M., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[10] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949

[11] Saakyan A. A., “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. AN ArmSSR. Ser. matem., 21:6 (1986), 517–529 | MR

[12] Potapov M. K., “Izuchenie nekotorykh klassov funktsii pri pomoschi priblizheniya “uglom””, Tr. MIAN, 117, Nauka, M., 1972, 256–291 | MR | Zbl