Spherical partial sums of the~double Fourier series of functions of bounded generalized variation
Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 29-60

Voir la notice de l'article provenant de la source Math-Net.Ru

The spherical partial sums of the double Fourier series of functions in the Waterman classes are studied. The main result of the paper is as follows. Theorem 1. {\it Let $\Lambda_\varepsilon =\biggl\{\dfrac{n^{3/4}}{(\ln(n+1))^{1/2+\varepsilon}}\biggr\}_{n=1}^\infty$ for $\varepsilon>0$. Let $f(x,y)\in\Lambda_\varepsilon BV(T^2)$ and let \begin{align*} I_r(f)=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}J_r(f) \\ =\sup_{x,y\in T}\sup_{u,v\in[-1,1]}\sum_{r-1|(m,n)|\leqslant r+1}|a_{m,n}(\psi_{x,y,u,v})|\leqslant C \end{align*} for $r\geqslant 1$, where $$ \psi _{x,y,u,v}(s,t)=\psi (s,t)=f(x+t,y+s)w(t)w(s)e^{-i(tu+sv)}, \quad and\quad w(\tau)=\frac\tau{2\sin(\theta/2)}\,. $$ Then $$ \sup_{R\geqslant 1}\sup _{(x,y)\in T^2}|S_R(f,x,y)|\leqslant C(f,\varepsilon). $$ for each $R\geqslant 1$.} Problem of circular convergence of Fourier series of the characteristic function of plane convex sets are also considered.
@article{SM_1997_188_1_a1,
     author = {M. I. Dyachenko},
     title = {Spherical partial sums of the~double {Fourier} series of functions of bounded generalized variation},
     journal = {Sbornik. Mathematics},
     pages = {29--60},
     publisher = {mathdoc},
     volume = {188},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - Spherical partial sums of the~double Fourier series of functions of bounded generalized variation
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 29
EP  - 60
VL  - 188
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/
LA  - en
ID  - SM_1997_188_1_a1
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T Spherical partial sums of the~double Fourier series of functions of bounded generalized variation
%J Sbornik. Mathematics
%D 1997
%P 29-60
%V 188
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/
%G en
%F SM_1997_188_1_a1
M. I. Dyachenko. Spherical partial sums of the~double Fourier series of functions of bounded generalized variation. Sbornik. Mathematics, Tome 188 (1997) no. 1, pp. 29-60. http://geodesic.mathdoc.fr/item/SM_1997_188_1_a1/