Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid
Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1861-1884
Voir la notice de l'article provenant de la source Math-Net.Ru
An estimate of the $L_p$-norm, $p\geqslant 1$, of an arbitrary algebraic polynomial of degree
$\leqslant n$ in terms of its values at $N>n$ nodes of a uniform grid is obtained. This estimate shows, in particular, that for $N\geqslant \theta n^2$ with $\theta >0$ the $L_p$-norm of a polynomial grows as $n\to\infty$ not faster than the $L_q$-means, $q\geqslant p$, of this polynomial over the nodes of the grid times some power of $n$.
@article{SM_1997_188_12_a6,
author = {I. I. Sharapudinov},
title = {Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid},
journal = {Sbornik. Mathematics},
pages = {1861--1884},
publisher = {mathdoc},
volume = {188},
number = {12},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/}
}
TY - JOUR AU - I. I. Sharapudinov TI - Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid JO - Sbornik. Mathematics PY - 1997 SP - 1861 EP - 1884 VL - 188 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/ LA - en ID - SM_1997_188_12_a6 ER -
%0 Journal Article %A I. I. Sharapudinov %T Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid %J Sbornik. Mathematics %D 1997 %P 1861-1884 %V 188 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/ %G en %F SM_1997_188_12_a6
I. I. Sharapudinov. Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid. Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1861-1884. http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/