Estimating the $L_p$-norm of an algebraic polynomial in terms of its values at the nodes of a uniform grid
Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1861-1884 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An estimate of the $L_p$-norm, $p\geqslant 1$, of an arbitrary algebraic polynomial of degree $\leqslant n$ in terms of its values at $N>n$ nodes of a uniform grid is obtained. This estimate shows, in particular, that for $N\geqslant \theta n^2$ with $\theta >0$ the $L_p$-norm of a polynomial grows as $n\to\infty$ not faster than the $L_q$-means, $q\geqslant p$, of this polynomial over the nodes of the grid times some power of $n$.
@article{SM_1997_188_12_a6,
     author = {I. I. Sharapudinov},
     title = {Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid},
     journal = {Sbornik. Mathematics},
     pages = {1861--1884},
     year = {1997},
     volume = {188},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Estimating the $L_p$-norm of an algebraic polynomial in terms of its values at the nodes of a uniform grid
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1861
EP  - 1884
VL  - 188
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/
LA  - en
ID  - SM_1997_188_12_a6
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Estimating the $L_p$-norm of an algebraic polynomial in terms of its values at the nodes of a uniform grid
%J Sbornik. Mathematics
%D 1997
%P 1861-1884
%V 188
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/
%G en
%F SM_1997_188_12_a6
I. I. Sharapudinov. Estimating the $L_p$-norm of an algebraic polynomial in terms of its values at the nodes of a uniform grid. Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1861-1884. http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/

[1] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz., M., 1960

[2] Bernshtein S. N., “Sur une classe de formules d'interpolation”, Izv. AN SSSR. OMEN, 1931, no. 9, 1151–1161

[3] Marcinkiewicz J., “Quelques remarques sur l'interpolation”, Acta Sci. Math., 1937, no. 8, 127–130 | Zbl

[4] Lozinskii S. M., “O skhodimosti i summiruemosti ryadov Fure i interpolyatsionnykh protsessov”, Matem. sb., 14(56):3 (1944), 175–268 | MR

[5] Nikolskii S. M., “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN, 38, Nauka, M., 1951, 244–278

[6] Coppersmith D., Rivlin T. J., “The growth of polynomials bounded of equally spased points”, SIAM J. Math. Anal., 23 (1992), 970–983 | DOI | MR | Zbl

[7] Sharapudinov I. I., “Ob ogranichennosti v $C[-1,1]$ srednikh Valle-Pussena dlya diskretnykh summ Fure–Chebyshëva”, Matem. sb., 187:1 (1996), 143–160 | MR | Zbl

[8] Schönhage A., “Fehlerfortpflantzung bei Interpolation”, Numer. Math., 3 (1961), 62–71 | DOI | MR | Zbl

[9] Ehlich H., Zeller K., “Schwankung von Polynomen zwischen Gitterpunkten”, Math. Z., 86 (1964), 41–44 | DOI | MR | Zbl

[10] Ehlich H., Zeller K., “Numerische Abschätzung von Polynomen”, Z. Angew. Math. Mech., 45 (1965), T20–T22 | MR | Zbl

[11] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962