Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid
Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1861-1884

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate of the $L_p$-norm, $p\geqslant 1$, of an arbitrary algebraic polynomial of degree $\leqslant n$ in terms of its values at $N>n$ nodes of a uniform grid is obtained. This estimate shows, in particular, that for $N\geqslant \theta n^2$ with $\theta >0$ the $L_p$-norm of a polynomial grows as $n\to\infty$ not faster than the $L_q$-means, $q\geqslant p$, of this polynomial over the nodes of the grid times some power of $n$.
@article{SM_1997_188_12_a6,
     author = {I. I. Sharapudinov},
     title = {Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid},
     journal = {Sbornik. Mathematics},
     pages = {1861--1884},
     publisher = {mathdoc},
     volume = {188},
     number = {12},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1861
EP  - 1884
VL  - 188
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/
LA  - en
ID  - SM_1997_188_12_a6
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid
%J Sbornik. Mathematics
%D 1997
%P 1861-1884
%V 188
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/
%G en
%F SM_1997_188_12_a6
I. I. Sharapudinov. Estimating the~$L_p$-norm of an~algebraic polynomial in terms of its values at the~nodes of a~uniform grid. Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1861-1884. http://geodesic.mathdoc.fr/item/SM_1997_188_12_a6/