Topological properties of the set of fixed points of a multivalued map
Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1761-1782 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is a study of the topological properties of the set of fixed points of a multivalued map. Some theorems are proved on the topological dimension of this set, and conditions are studied under which the set is connected or acyclic. The theorems obtained are applied to the investigation of the set of solutions of differential and integral inclusions.
@article{SM_1997_188_12_a2,
     author = {B. D. Gel'man},
     title = {Topological properties of the~set of fixed points of a~multivalued map},
     journal = {Sbornik. Mathematics},
     pages = {1761--1782},
     year = {1997},
     volume = {188},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_12_a2/}
}
TY  - JOUR
AU  - B. D. Gel'man
TI  - Topological properties of the set of fixed points of a multivalued map
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1761
EP  - 1782
VL  - 188
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_12_a2/
LA  - en
ID  - SM_1997_188_12_a2
ER  - 
%0 Journal Article
%A B. D. Gel'man
%T Topological properties of the set of fixed points of a multivalued map
%J Sbornik. Mathematics
%D 1997
%P 1761-1782
%V 188
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1997_188_12_a2/
%G en
%F SM_1997_188_12_a2
B. D. Gel'man. Topological properties of the set of fixed points of a multivalued map. Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1761-1782. http://geodesic.mathdoc.fr/item/SM_1997_188_12_a2/

[1] Borisovich Yu. G., “Sovremennyi podkhod k teorii topologicheskikh kharakteristik nelineinykh operatorov, I”, Geom. i teoriya osobennostei v nelineinykh uravneniyakh, Izd-vo VGU, Voronezh, 1987, 24–46 | MR

[2] Borisovich Yu. G., “Sovremennyi podkhod k teorii topologicheskikh kharakteristik nelineinykh operatorov, II”, Globalnyi analiz i nelineinye uravneniya, Izd-vo VGU, Voronezh, 1988, 22–43 | MR

[3] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[4] Gelman B. D., “O nekotorykh problemakh v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, Topologicheskie i geometricheskie metody analiza, Izd-vo VGU, Voronezh, 1989, 90–105 | MR

[5] Gelman B. D., “Obobschennaya stepen mnogoznachnykh otobrazhenii”, Nelineinye operatory v globalnom analize, Izd-vo VGU, Voronezh, 1991, 34–51 | MR

[6] Górniewicz L., “Homological methods in fixed point theory of multi-valued maps”, Dissertationes. Math. (Rozprawy Mat.), no. 129, 1975 | MR | Zbl

[7] Lasry J. M., Robert R., “Analyse non-linéare multivoque”, Cahiers Math. de la Decision, no. 7611, Centre de Recherche de Math., Paris–Dauphine

[8] Gel'man B. D., “Topological properties of the set of fixed points for multivalued maps”, International Congress of Math., Short. Com. (Zürich), 1994, 59

[9] Michael E., “Continuous selections, 1”, Ann. of Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[10] Petryshyn W. V., Fitzpatrick P. M., “A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings”, Trans. Amer. Math. Soc., 194 (1974), 1–25 | DOI | Zbl

[11] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii, Izd-vo VGU, Voronezh, 1986 | MR | Zbl

[12] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[13] Aubin J.-P., Cellina A., “Differential inclusions. Set-valued maps and viability theory”, Grundlehren Math. Wiss., 264:14 (1984), 342 | MR | Zbl

[14] Saint Raymond J., “Points fixes des multiapplications à valeurs convexes”, C. R. Acad. Sci. Paris. Sér. I. Math., 298 (1984), 71–74 | MR | Zbl

[15] Gelman B. D., “O strukture mnozhestva reshenii vklyuchenii s mnogoznachnymi operatorami”, Globalnyi analiz i matem. fizika, Izd-vo VGU, Voronezh, 1987, 26–41

[16] Dzedzej Z., Gelman B. D., “Dimension of solution set for differential inclusions”, Demonstratio Math., 26:1 (1993), 149–158 | MR | Zbl

[17] Saint Raymond J., “Points fixes des contractions multivoques”, Fixed Point Theory and Appl., Pitman Res. Notes Math. Ser., 252, 1991, 359–375 | MR | Zbl

[18] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[19] Gurevich V., Volmen G., Teoriya razmernosti, IL, M., 1948

[20] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, Nauka, M., 1985, 194–252 | MR | Zbl

[21] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1971 | MR | Zbl

[22] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[23] Krasnoselskii M. A., Perov A. I., “O suschestvovanii reshenii u nekotorykh nelineinykh operatornykh uravnenii”, Dokl. AN SSSR, 126:1 (1959), 15–18 | MR | Zbl

[24] Bogatyrev A. V., “Nepodvizhnye tochki i svoistva reshenii differentsialnykh vklyuchenii”, Izv. AN SSSR. Ser. matem., 47:4 (1983), 895–909 | MR | Zbl

[25] Aronszajn N., “Le correspondent topologique de l'unicit dans la théorie des équations différentielles”, Ann. of Math., 43 (1942), 730–738 | DOI | MR | Zbl

[26] Lasry J. M., Robert R., “Acyclicité de l'ensemble des solutions de certains équations fonctionnelles”, C. R. Acad. Sci. Paris. Sér. I. Math., 282 (1976), 1283–1286 | MR | Zbl

[27] Górniewicz L., “On the solutions of differential inclusions”, J. Math. Anal. Appl., 113 (1986), 1349–1366 | DOI | MR

[28] Sklyarenko E. G., “O nekotorykh prilozheniyakh teorii puchkov v obschei topologii”, UMN, 19:6 (1964), 47–70 | MR | Zbl

[29] Spener E., Algebraicheskaya topologiya, Mir, M., 1971 | MR | Zbl

[30] Bulgakov A. I., Lyapin L. N., “Nekotorye svoistva mnozhestva reshenii integralnogo vklyucheniya Volterra–Gammershteina”, Differents. uravneniya, 14:8 (1978), 1465–1472 | MR | Zbl