Global asymptotic formulae for the~fourth Painleve transcendent
Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1739-1760

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of the asymptotic and analytic properties of the fourth Painleve transcendent as the absolute value of the independent variable approaches infinity. The problem is solved using the WKB method, Whitham averaging, and monodromy preserving deformations. The corresponding modulation equation is deduced and the asymptotic distribution of the zeros of the fourth transcendent is calculated. The dominant term of the expansion for the solution of Painleve's fourth equation is written down in the form of an elliptic function with parameters satisfying the above-mentioned modulation equation.
@article{SM_1997_188_12_a1,
     author = {V. L. Vereshchagin},
     title = {Global asymptotic formulae for the~fourth {Painleve} transcendent},
     journal = {Sbornik. Mathematics},
     pages = {1739--1760},
     publisher = {mathdoc},
     volume = {188},
     number = {12},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/}
}
TY  - JOUR
AU  - V. L. Vereshchagin
TI  - Global asymptotic formulae for the~fourth Painleve transcendent
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1739
EP  - 1760
VL  - 188
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/
LA  - en
ID  - SM_1997_188_12_a1
ER  - 
%0 Journal Article
%A V. L. Vereshchagin
%T Global asymptotic formulae for the~fourth Painleve transcendent
%J Sbornik. Mathematics
%D 1997
%P 1739-1760
%V 188
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/
%G en
%F SM_1997_188_12_a1
V. L. Vereshchagin. Global asymptotic formulae for the~fourth Painleve transcendent. Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1739-1760. http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/