Global asymptotic formulae for the fourth Painleve transcendent
Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1739-1760 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the study of the asymptotic and analytic properties of the fourth Painleve transcendent as the absolute value of the independent variable approaches infinity. The problem is solved using the WKB method, Whitham averaging, and monodromy preserving deformations. The corresponding modulation equation is deduced and the asymptotic distribution of the zeros of the fourth transcendent is calculated. The dominant term of the expansion for the solution of Painleve's fourth equation is written down in the form of an elliptic function with parameters satisfying the above-mentioned modulation equation.
@article{SM_1997_188_12_a1,
     author = {V. L. Vereshchagin},
     title = {Global asymptotic formulae for the~fourth {Painleve} transcendent},
     journal = {Sbornik. Mathematics},
     pages = {1739--1760},
     year = {1997},
     volume = {188},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/}
}
TY  - JOUR
AU  - V. L. Vereshchagin
TI  - Global asymptotic formulae for the fourth Painleve transcendent
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1739
EP  - 1760
VL  - 188
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/
LA  - en
ID  - SM_1997_188_12_a1
ER  - 
%0 Journal Article
%A V. L. Vereshchagin
%T Global asymptotic formulae for the fourth Painleve transcendent
%J Sbornik. Mathematics
%D 1997
%P 1739-1760
%V 188
%N 12
%U http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/
%G en
%F SM_1997_188_12_a1
V. L. Vereshchagin. Global asymptotic formulae for the fourth Painleve transcendent. Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1739-1760. http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/

[1] Painlevé P., “Sur les equations differentielles du second ordre et d'ordre superieur, dont l'integrale generale est uniforme”, Acta Math., 25 (1902), 1–86 | DOI | MR

[2] Boutroux P., “Etude asymptotique de transcendents de M. Painlevé dont est les solutions des equations differentielles du second ordre”, Ann. L'Ecole Norm. Super, 31 (1914), 99–155 | MR

[3] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations, I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl

[4] Kapaev A. A., “Asimptotika reshenii uravneniya Penleve pervogo roda”, Differents. uravneniya, 24:10 (1988), 1684–1694 | MR

[5] Kapaev A. A., “Asimptoticheskie formuly dlya funktsii Penleve vtorogo roda”, TMF, 77:3 (1988), 323–332 | MR | Zbl

[6] Kapaev A. A., Global asymptotics of the first Painlevé transcendent, Preprint INS#225, Clarkson University, New York, 1993

[7] Novokshenov V. Yu., “Modulirovannaya ellipticheskaya funktsiya kak reshenie vtorogo uravneniya Penleve v kompleksnoi ploskosti”, Dokl. AN SSSR, 311:2 (1990), 288–291 | MR | Zbl

[8] Novokshenov V. Yu., Radial-symmetric solution of the cosh-Laplace equation and the distribution of its singularities, Preprint #64, SFB 288, Berlin, 1993 | MR

[9] Joshi N., Kruskal M. D., “An asymptotic approach to the connection problem for the first and the second Painlevé equations”, Phys. Lett. A, 130:3 (1988), 129–137 | DOI | MR

[10] Kitaev A. V., “Ob avtomodelnykh resheniyakh modifitsirovannogo nelineinogo uravneniya Shrëdingera”, TMF, 64:3 (1985), 347–369 | MR | Zbl

[11] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1963 | MR

[12] Novokshenov V. Yu., “Anzats Butru dlya vtorogo uravneniya Penleve v kompleksnoi oblasti”, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1229–1251 | MR | Zbl

[13] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977

[14] Vereschagin V. L., “Nonlinear quasiclassics and the Painlevé equations”, Talk at International Workshop “Singular Limits in Dispersive Waves – 2” (Zvenigorod, 1995)

[15] Jimbo M., Miwa T., “Monodromy preserving deformations of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2D:3 (1981), 407–448 | DOI | MR

[16] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya, I”, Sovr. problemy matem. Fundament. napravleniya, 1, VINITI, M., 1985, 7–150 | MR

[17] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[18] Bateman H., Erdelyi A., Higher transcendental functions, V. 3, McGraw-Hill Book Company, Inc., New York, 1955 | MR | Zbl