@article{SM_1997_188_12_a1,
author = {V. L. Vereshchagin},
title = {Global asymptotic formulae for the~fourth {Painleve} transcendent},
journal = {Sbornik. Mathematics},
pages = {1739--1760},
year = {1997},
volume = {188},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/}
}
V. L. Vereshchagin. Global asymptotic formulae for the fourth Painleve transcendent. Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1739-1760. http://geodesic.mathdoc.fr/item/SM_1997_188_12_a1/
[1] Painlevé P., “Sur les equations differentielles du second ordre et d'ordre superieur, dont l'integrale generale est uniforme”, Acta Math., 25 (1902), 1–86 | DOI | MR
[2] Boutroux P., “Etude asymptotique de transcendents de M. Painlevé dont est les solutions des equations differentielles du second ordre”, Ann. L'Ecole Norm. Super, 31 (1914), 99–155 | MR
[3] Flaschka H., Newell A. C., “Monodromy- and spectrum-preserving deformations, I”, Comm. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[4] Kapaev A. A., “Asimptotika reshenii uravneniya Penleve pervogo roda”, Differents. uravneniya, 24:10 (1988), 1684–1694 | MR
[5] Kapaev A. A., “Asimptoticheskie formuly dlya funktsii Penleve vtorogo roda”, TMF, 77:3 (1988), 323–332 | MR | Zbl
[6] Kapaev A. A., Global asymptotics of the first Painlevé transcendent, Preprint INS#225, Clarkson University, New York, 1993
[7] Novokshenov V. Yu., “Modulirovannaya ellipticheskaya funktsiya kak reshenie vtorogo uravneniya Penleve v kompleksnoi ploskosti”, Dokl. AN SSSR, 311:2 (1990), 288–291 | MR | Zbl
[8] Novokshenov V. Yu., Radial-symmetric solution of the cosh-Laplace equation and the distribution of its singularities, Preprint #64, SFB 288, Berlin, 1993 | MR
[9] Joshi N., Kruskal M. D., “An asymptotic approach to the connection problem for the first and the second Painlevé equations”, Phys. Lett. A, 130:3 (1988), 129–137 | DOI | MR
[10] Kitaev A. V., “Ob avtomodelnykh resheniyakh modifitsirovannogo nelineinogo uravneniya Shrëdingera”, TMF, 64:3 (1985), 347–369 | MR | Zbl
[11] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1963 | MR
[12] Novokshenov V. Yu., “Anzats Butru dlya vtorogo uravneniya Penleve v kompleksnoi oblasti”, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1229–1251 | MR | Zbl
[13] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977
[14] Vereschagin V. L., “Nonlinear quasiclassics and the Painlevé equations”, Talk at International Workshop “Singular Limits in Dispersive Waves – 2” (Zvenigorod, 1995)
[15] Jimbo M., Miwa T., “Monodromy preserving deformations of linear ordinary differential equations with rational coefficients, II”, Phys. D, 2D:3 (1981), 407–448 | DOI | MR
[16] Arnold V. I., Ilyashenko Yu. S., “Obyknovennye differentsialnye uravneniya, I”, Sovr. problemy matem. Fundament. napravleniya, 1, VINITI, M., 1985, 7–150 | MR
[17] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl
[18] Bateman H., Erdelyi A., Higher transcendental functions, V. 3, McGraw-Hill Book Company, Inc., New York, 1955 | MR | Zbl