Estimate of the solution of the scattering problem for a one-dimensional trapping potential
Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1731-1738
Cet article a éte moissonné depuis la source Math-Net.Ru
A new method is proposed for estimating the imaginary part of the pole of the scattering matrix for a one-dimensional trapping potential. The method is based on the principle of wave operator invariance and on the Parseval equality for the continuous spectrum eigenfunctions.
@article{SM_1997_188_12_a0,
author = {A. A. Arsen'ev},
title = {Estimate of the solution of the~scattering problem for a~one-dimensional trapping potential},
journal = {Sbornik. Mathematics},
pages = {1731--1738},
year = {1997},
volume = {188},
number = {12},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_12_a0/}
}
A. A. Arsen'ev. Estimate of the solution of the scattering problem for a one-dimensional trapping potential. Sbornik. Mathematics, Tome 188 (1997) no. 12, pp. 1731-1738. http://geodesic.mathdoc.fr/item/SM_1997_188_12_a0/
[1] “Spesial Issue on Mesoscopic Physics”, J. Math. Phys., 37:10 (1996)
[2] Arsenev A. A., “Rezonansnye svoistva matritsy rasseyaniya dlya odnomernogo operatora Shredingera s lovushechnym potentsialom”, Matem. sb., 187:6 (1996), 3–20 | MR | Zbl
[3] Birman M. Sh., Entina S. B., “Statsionarnyi podkhod v abstraktnoi teorii rasseyaniya”, Izv. AN SSSR. Ser. matem., 31 (1967), 401–430 | MR | Zbl