Effective criteria for the strong sign-regularity and the oscillation property of the Green's functions of two-point boundary-value problems
Sbornik. Mathematics, Tome 188 (1997) no. 11, pp. 1687-1728 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Necessary and sufficient conditions for strong sign-regularity and the oscillation property (in the sense of Gantmakher and Krein) of the Green's function of a two-point boundary eigenvalue problem are obtained. These conditions guarantee that even in a non-self-adjoint case the eigenvalues are real and have several other spectral properties similar to those of the classical Sturm–Liouville problem. The conditions are formulated in terms of the properties of a uniquely defined fundamental system of solutions of the differential equation. This makes it possible to verify them effectively using a computer and to establish, as the final result, the oscillation property of the Green's function and the corresponding spectral properties of the boundary-value problem in a large number of cases in which these properties could not be detected on the basis of previously known sufficient conditions.
@article{SM_1997_188_11_a4,
     author = {G. D. Stepanov},
     title = {Effective criteria for the~strong sign-regularity and the~oscillation property of {the~Green's} functions of two-point boundary-value problems},
     journal = {Sbornik. Mathematics},
     pages = {1687--1728},
     year = {1997},
     volume = {188},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_11_a4/}
}
TY  - JOUR
AU  - G. D. Stepanov
TI  - Effective criteria for the strong sign-regularity and the oscillation property of the Green's functions of two-point boundary-value problems
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1687
EP  - 1728
VL  - 188
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_11_a4/
LA  - en
ID  - SM_1997_188_11_a4
ER  - 
%0 Journal Article
%A G. D. Stepanov
%T Effective criteria for the strong sign-regularity and the oscillation property of the Green's functions of two-point boundary-value problems
%J Sbornik. Mathematics
%D 1997
%P 1687-1728
%V 188
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1997_188_11_a4/
%G en
%F SM_1997_188_11_a4
G. D. Stepanov. Effective criteria for the strong sign-regularity and the oscillation property of the Green's functions of two-point boundary-value problems. Sbornik. Mathematics, Tome 188 (1997) no. 11, pp. 1687-1728. http://geodesic.mathdoc.fr/item/SM_1997_188_11_a4/

[1] Stepanov G. D., “Kriterii ostsillyatsionnosti funktsii Grina dvukhtochechnoi kraevoi zadachi”, Dokl. AN SSSR, 213:4 (1973), 793–794 | MR | Zbl

[2] Stepanov G. D., “Kriterii znakoregulyarnosti funktsii Grina dvukhtochechnoi kraevoi zadachi”, Dokl. AN SSSR, 234:4 (1977), 765–767 | MR | Zbl

[3] Levin A. Yu., Stepanov G. D., “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka”, Sib. matem. zhurn., 17:3 (1976), 606–626 ; 17:4, 813–830 | MR | Zbl | Zbl

[4] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M.–L., 1950

[5] Krein M. G., Finkelshtein G. M., “O vpolne neotritsatelnykh funktsiyakh Grina obyknovennykh differentsialnykh operatorov”, Dokl. AN SSSR, 24:3 (1939), 220–223 | MR | Zbl

[6] Krein M. G., “O nesimmetricheskikh ostsillyatsionnykh funktsiyakh Grina obyknovennykh differentsalnykh operatorov”, Dokl. AN SSSR, 25:8 (1939), 643–646 | MR | Zbl

[7] Kellogg O. D., “The Oscillation of Functions of an Orthogonal Set”, Amer. J. Math., 38 (1916), 1–5 | DOI | MR | Zbl

[8] Kellogg O. D., “Orthogonal Function Sets Arising from integral Equations”, Amer. J. Math., 40 (1918), 145–154 | DOI | MR | Zbl

[9] Kellogg O. D., “Interpolation properties of orthogonal sets of solutions of differential equations”, Amer. J. Math., 1918, no. 40, 220–234 | MR

[10] Gantmakher F. R., Krein M. G., “Ob odnom klasse determinantov v svyazi s integralnymi yadrami Kellog'a”, Matem. sb., 42:4 (1935), 501–508 | Zbl

[11] Gantmakher F. R., Krein M. G., “Sur les matrices oscillatoires et completement non negatives”, Compositio Mathematica, 4 (1937), 445–476 | MR | Zbl

[12] Gantmakher F. R., “O nesimmetricheskikh yadrakh Kelloga”, Dokl. AN SSSR, 10:1 (1936), 3–5

[13] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR

[14] Karlin S., Total Positivity, Stanford Univ. Press, Stanford, 1968 | MR

[15] Karlin S., Stadden V., Chebyshevskie sistemy i ikh primenenie v analize i statistike, Nauka, M., 1976 | MR

[16] Barkovskii Yu. S., Yudovich V. I., “Rozhdenie vikhrei Teilora v sluchae raznovraschayuschikhsya tsilindrov i spektralnye svoistva odnogo klassa kraevykh zadach”, Dokl. AN SSSR, 242:4 (1978), 784–787 | MR | Zbl

[17] Makin R. S., “O spektre statsionarnogo odnoskorostnogo uravneniya perenosa s izotropnym rasseyaniem”, Dokl. AN SSSR, 274:3 (1984), 536–540 | MR | Zbl

[18] Polia G., “On the meanvalue theorem corresponding to a given linear homogeneous differential equation”, Trans. Amer. Math. Soc., 24 (1922), 312–324 | DOI | MR

[19] Levin A. Yu., “Neostsillyatsiya reshenii uravneniya $x^{(n)}+p_1(t)x^{(n-1)}+\dots+p_n(t)x=0$”, UMN, 24:2 (1969), 43–96 | MR

[20] Kalafati P. D., “O funktsiyakh Grina obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR, 26:6 (1940), 535–539 | MR

[21] Karon J. M., “The sihn-regularity properties of a class of Green's, functions for ordinary differential equations”, J. Differential Equations, 1969, no. 6, 484–502 | DOI | MR | Zbl

[22] Karlin S., “Total Positivity, Interpolation by Splines and Green's, functions for ordinary differential equations”, J. Approx. Theory, 4:1 (1971), 91–112 | DOI | MR | Zbl

[23] Schoenberg I. J., “Über variationsvermindernde lineare Transformationen”, Math. Z., 1930, no. 32, 321–328 | DOI | MR | Zbl

[24] Levin A. Yu., Stepanov G. D., “Odnomernye kraevye zadachi s operatorami, ne ponizhayuschimi chisla peremen znaka”, UMN, 30:1 (1975), 245–246 | MR | Zbl

[25] Stepanov G. D., “O veschestvennosti sobstvennykh znachenii nekotorykh kraevykh zadach”, Trudy matem. fak-ta VGU, no. 7, Voronezh, 1972, 94–95

[26] Barkovskii Yu. S., “Gipoostsillyatsionnye i giperostsillyatsionnye differentsialnye operatory”, Dokl. AN SSSR, 267:2 (1982), 269–271 | MR | Zbl

[27] Yudovich V. I., “Spektralnye svoistva ostsillyatsionnogo differentsialnogo operatora na pryamoi”, UMN, 38:1 (1983), 205–206 | MR | Zbl

[28] Arkhipov V. P., Sobolev A. V., “Ostsillyatsionnye svoistva vyrozhdayuschikhsya differentsialnykh operatorov vtorogo poryadka”, Dokl. AN SSSR, 275:4 (1984), 777–779 | MR

[29] Pokornyi Yu. V., Lazarev K. P., “Nekotorye ostsillyatsionnye teoremy dlya mnogotochechnykh zadach”, Differents. uravneniya, 23:4 (1987), 658–670 | MR | Zbl

[30] Levin A. Yu., “Absolyutnaya neostsillyatsionnaya ustoichivost i smezhnye voprosy”, Algebra i analiz, 4:1 (1992), 154–166

[31] Borovskikh A. V., Pokornyi Yu. V., “Sistemy Chebyshëva–Khaara v teorii razryvnykh yader Kelloga”, UMN, 49:3 (1994), 3–42 | MR | Zbl

[32] Borovskikh A. V., Lazarev K. P., Pokornyi Yu. V., “Ob ostsillyatsionnykh spektralnykh svoistvakh razryvnykh kraevykh zadach”, Dokl. AN, 335:4 (1994), 409–412 | MR | Zbl

[33] Kalafati P. D., “Ostsillyatsionnye svoistva fundamentalnykh funktsii kraevykh zadach tretego poryadka”, Dokl. AN SSSR, 143:3 (1962), 518–521 | MR | Zbl

[34] Stepanov G. D., “Ob effektivnykh kriteriyakh ostsillyatsionnosti i znakoregulyarnosti funktsii Grina dvukhtochechnoi kraevoi zadachi”, Vesennyaya Voronezhskaya matematicheskaya shkola “Pontryaginskie chteniya–IV”, Voronezh, 1993, 176

[35] Stepanov G. D., “O znakopostoyannykh klassa $p$ matritsakh i yadrakh”, Vestnik Yaroslavskogo un-ta, 1973, no. 5, 138–151

[36] Stepanov G. D., Znakoregulyarnost i odnomernye kraevye zadachi, Dis. $\dots$ kand. fiz.-matem. nauk, Yaroslavl, 1974

[37] Gantmakher F. R., Teoriya matrits, Nauka, M., 1966 | MR

[38] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 2, Gostekhizdat, M., 1956