On the existence of complements of the canonical divisor for Mori conic bundles
Sbornik. Mathematics, Tome 188 (1997) no. 11, pp. 1665-1685 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper continues the author's study of extremal contractions in the sense of Mori from three-dimensional varieties onto surfaces. Such contractions occur in a natural way in the birational classification theory of three-dimensional algebraic varieties. Reid's “general elephant” conjecture of the complementedness of the canonical divisor and also the conjecture about singularities of the base surface are discussed. The situation is studied locally near a singular fibre.
@article{SM_1997_188_11_a3,
     author = {Yu. G. Prokhorov},
     title = {On the existence of complements of the~canonical divisor for {Mori} conic bundles},
     journal = {Sbornik. Mathematics},
     pages = {1665--1685},
     year = {1997},
     volume = {188},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_11_a3/}
}
TY  - JOUR
AU  - Yu. G. Prokhorov
TI  - On the existence of complements of the canonical divisor for Mori conic bundles
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1665
EP  - 1685
VL  - 188
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_11_a3/
LA  - en
ID  - SM_1997_188_11_a3
ER  - 
%0 Journal Article
%A Yu. G. Prokhorov
%T On the existence of complements of the canonical divisor for Mori conic bundles
%J Sbornik. Mathematics
%D 1997
%P 1665-1685
%V 188
%N 11
%U http://geodesic.mathdoc.fr/item/SM_1997_188_11_a3/
%G en
%F SM_1997_188_11_a3
Yu. G. Prokhorov. On the existence of complements of the canonical divisor for Mori conic bundles. Sbornik. Mathematics, Tome 188 (1997) no. 11, pp. 1665-1685. http://geodesic.mathdoc.fr/item/SM_1997_188_11_a3/

[1] Prokhorov Yu. G., “K probleme obschego slona dlya trekhmernykh $\mathbb Q$-Fano rassloenii nad poverkhnostyu”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 263–280 | MR | Zbl

[2] Prokhorov Yu. G., On $\mathbb Q$-Fano fiber spaces with two-dimensional base, Preprint MPI 95/33 | MR | Zbl

[3] Prokhorov Yu. G., On extremal contractions from $3$-folds to surfaces, Preprint, Warwick 84/1995 | Zbl

[4] Prokhorov Yu. G., “On extremal contractions from $3$-folds to surfaces: the case of one non-Gorenstein point”, Contemporary Math. AMS, 207 (1997), 119–141 | MR | Zbl

[5] Iskovskikh V. A., “K probleme ratsionalnosti dlya rassloenii na koniki”, Matem. sb., 182:1 (1991), 114–121 | MR

[6] Iskovskikh V. A., “O kriterii ratsionalnosti dlya rassloenii na koniki”, Matem. sb., 187:7 (1996), 75–92 | MR | Zbl

[7] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. AN SSSR. Ser. matem., 56:1 (1992), 105–201 ; 57:6 (1993), 141–175 | MR | Zbl | MR | Zbl

[8] Mori S., “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl

[9] Reid M., “Minimal models of canonical $3$-folds”, Algebraic Varieties and Analytic Varieties, Adv. Stud. Pure Math., 1, ed. S. Iitaka, 1983, 131–180 | MR | Zbl

[10] Danilov V. I., “Biratsionalnaya geometriya toricheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 971–982 | MR

[11] Mori S., “On $3$-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl

[12] Reid M., “Young persons guide to canonical singularities”, Algebraic Geometry (Bowdoin, 1985), Proc. Symp. Pure Math., 46, 1987, 345–414 | MR | Zbl

[13] Kollár J., Mori S., “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703 | DOI | MR | Zbl

[14] Cutkosky S., “Elementary contractions of Gorenstein $3$-folds”, Math. Ann., 280 (1988), 521–525 | DOI | MR | Zbl

[15] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Algebraic Geometry, 1 (1992), 429–448 | MR | Zbl

[16] Ishii S., “On Fano 3-folds with non-rational singularities and two-dimensional base”, Abh. Math. Sem. Univ. Hamburg, 64 (1994), 249–277 | DOI | MR | Zbl

[17] Klemens Kh., Kollar Ya., Mori S., Mnogomernaya kompleksnaya geometriya, Mir, M., 1993

[18] Kollár J., Standard models of elliptic $3$-folds, Preprint

[19] Cartan H., “Quotient d'une space analytique par un groupe d'automorphismes”, Algebraic Geometry and Topology, Princeton Univ. Press, Princeton, 1957, 90–102 | MR | Zbl

[20] Beauville A., “Variétés de Prym et jacobienne intermédiaires”, Ann. Sci. Ecole Norm. Sup. (4), 10 (1977), 309–391 | MR | Zbl

[21] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model program”, Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, 1987, 283–360 | MR | Zbl

[22] Kempf G., “Cohomology and convexity”, Toroidal Embeddings, I, Lect. Notes in Math., 339, 1973, 41–52 | MR

[23] Matsumura H., Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl

[24] Catanese F., Franciosi M., Hulek K., Reid M., Embeddings of curves and surfaces, Preprint alg-geom, 1986 | MR

[25] Hartshorne R., Residues and duality, Lect. Notes in Math., 20, 1966 | MR | Zbl

[26] Catanese F., “Automorphisms of rational double points and moduli spaces of surfaces of general type”, Compositio Math., 61:1 (1987), 81–102 | MR | Zbl

[27] Lipman J., “Rational singularities with applications to algebraic surfaces and unique factorization”, Publ. Math. IHES, 36 (1969), 195–279 | MR | Zbl

[28] Kawamata Y., “Crepant blowing-ups of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. Math., 127 (1988), 93–163 | DOI | MR | Zbl