@article{SM_1997_188_11_a3,
author = {Yu. G. Prokhorov},
title = {On the existence of complements of the~canonical divisor for {Mori} conic bundles},
journal = {Sbornik. Mathematics},
pages = {1665--1685},
year = {1997},
volume = {188},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_11_a3/}
}
Yu. G. Prokhorov. On the existence of complements of the canonical divisor for Mori conic bundles. Sbornik. Mathematics, Tome 188 (1997) no. 11, pp. 1665-1685. http://geodesic.mathdoc.fr/item/SM_1997_188_11_a3/
[1] Prokhorov Yu. G., “K probleme obschego slona dlya trekhmernykh $\mathbb Q$-Fano rassloenii nad poverkhnostyu”, Fundamentalnaya i prikladnaya matematika, 1:1 (1995), 263–280 | MR | Zbl
[2] Prokhorov Yu. G., On $\mathbb Q$-Fano fiber spaces with two-dimensional base, Preprint MPI 95/33 | MR | Zbl
[3] Prokhorov Yu. G., On extremal contractions from $3$-folds to surfaces, Preprint, Warwick 84/1995 | Zbl
[4] Prokhorov Yu. G., “On extremal contractions from $3$-folds to surfaces: the case of one non-Gorenstein point”, Contemporary Math. AMS, 207 (1997), 119–141 | MR | Zbl
[5] Iskovskikh V. A., “K probleme ratsionalnosti dlya rassloenii na koniki”, Matem. sb., 182:1 (1991), 114–121 | MR
[6] Iskovskikh V. A., “O kriterii ratsionalnosti dlya rassloenii na koniki”, Matem. sb., 187:7 (1996), 75–92 | MR | Zbl
[7] Shokurov V. V., “Trekhmernye logperestroiki”, Izv. AN SSSR. Ser. matem., 56:1 (1992), 105–201 ; 57:6 (1993), 141–175 | MR | Zbl | MR | Zbl
[8] Mori S., “Flip theorem and the existence of minimal models for $3$-folds”, J. Amer. Math. Soc., 1:1 (1988), 117–253 | DOI | MR | Zbl
[9] Reid M., “Minimal models of canonical $3$-folds”, Algebraic Varieties and Analytic Varieties, Adv. Stud. Pure Math., 1, ed. S. Iitaka, 1983, 131–180 | MR | Zbl
[10] Danilov V. I., “Biratsionalnaya geometriya toricheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 46:5 (1982), 971–982 | MR
[11] Mori S., “On $3$-dimensional terminal singularities”, Nagoya Math. J., 98 (1985), 43–66 | MR | Zbl
[12] Reid M., “Young persons guide to canonical singularities”, Algebraic Geometry (Bowdoin, 1985), Proc. Symp. Pure Math., 46, 1987, 345–414 | MR | Zbl
[13] Kollár J., Mori S., “Classification of three-dimensional flips”, J. Amer. Math. Soc., 5:3 (1992), 533–703 | DOI | MR | Zbl
[14] Cutkosky S., “Elementary contractions of Gorenstein $3$-folds”, Math. Ann., 280 (1988), 521–525 | DOI | MR | Zbl
[15] Kollár J., Miyaoka Y., Mori S., “Rationally connected varieties”, J. Algebraic Geometry, 1 (1992), 429–448 | MR | Zbl
[16] Ishii S., “On Fano 3-folds with non-rational singularities and two-dimensional base”, Abh. Math. Sem. Univ. Hamburg, 64 (1994), 249–277 | DOI | MR | Zbl
[17] Klemens Kh., Kollar Ya., Mori S., Mnogomernaya kompleksnaya geometriya, Mir, M., 1993
[18] Kollár J., Standard models of elliptic $3$-folds, Preprint
[19] Cartan H., “Quotient d'une space analytique par un groupe d'automorphismes”, Algebraic Geometry and Topology, Princeton Univ. Press, Princeton, 1957, 90–102 | MR | Zbl
[20] Beauville A., “Variétés de Prym et jacobienne intermédiaires”, Ann. Sci. Ecole Norm. Sup. (4), 10 (1977), 309–391 | MR | Zbl
[21] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model program”, Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math., 10, 1987, 283–360 | MR | Zbl
[22] Kempf G., “Cohomology and convexity”, Toroidal Embeddings, I, Lect. Notes in Math., 339, 1973, 41–52 | MR
[23] Matsumura H., Commutative Ring Theory, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl
[24] Catanese F., Franciosi M., Hulek K., Reid M., Embeddings of curves and surfaces, Preprint alg-geom, 1986 | MR
[25] Hartshorne R., Residues and duality, Lect. Notes in Math., 20, 1966 | MR | Zbl
[26] Catanese F., “Automorphisms of rational double points and moduli spaces of surfaces of general type”, Compositio Math., 61:1 (1987), 81–102 | MR | Zbl
[27] Lipman J., “Rational singularities with applications to algebraic surfaces and unique factorization”, Publ. Math. IHES, 36 (1969), 195–279 | MR | Zbl
[28] Kawamata Y., “Crepant blowing-ups of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. Math., 127 (1988), 93–163 | DOI | MR | Zbl