Quotient spaces modulo tori ad transitive actions of Lie groups. II
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1561-1570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $K$ be a simple compact connected Lie group of rank greater than $8$ and let $A$ be a torus of this group in general position and of corank $1$: it is proved that the canonical transitive action of $K/A$ is essentially unique.
@article{SM_1997_188_10_a6,
     author = {A. N. Shchetinin},
     title = {Quotient spaces modulo tori ad transitive actions of {Lie} {groups.~II}},
     journal = {Sbornik. Mathematics},
     pages = {1561--1570},
     year = {1997},
     volume = {188},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/}
}
TY  - JOUR
AU  - A. N. Shchetinin
TI  - Quotient spaces modulo tori ad transitive actions of Lie groups. II
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1561
EP  - 1570
VL  - 188
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/
LA  - en
ID  - SM_1997_188_10_a6
ER  - 
%0 Journal Article
%A A. N. Shchetinin
%T Quotient spaces modulo tori ad transitive actions of Lie groups. II
%J Sbornik. Mathematics
%D 1997
%P 1561-1570
%V 188
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/
%G en
%F SM_1997_188_10_a6
A. N. Shchetinin. Quotient spaces modulo tori ad transitive actions of Lie groups. II. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1561-1570. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/

[1] Schetinin A. N., “Faktorprostranstva po toram i tranzitivnye deistviya grupp Li”, Matem. sb., 186:9 (1995), 147–160 | MR | Zbl

[2] Kreck M., Stolz S., “Some nondeffeomorphic homeomorphic homogeneous $7$-manifolds with positive sectional curvature”, J. Differential Geom., 33 (1991), 465–486 | MR | Zbl

[3] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979 | MR

[4] Onischik A. L., Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995 | MR | Zbl