Quotient spaces modulo tori ad transitive actions of Lie groups.~II
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1561-1570

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a simple compact connected Lie group of rank greater than $8$ and let $A$ be a torus of this group in general position and of corank $1$: it is proved that the canonical transitive action of $K/A$ is essentially unique.
@article{SM_1997_188_10_a6,
     author = {A. N. Shchetinin},
     title = {Quotient spaces modulo tori ad transitive actions of {Lie} {groups.~II}},
     journal = {Sbornik. Mathematics},
     pages = {1561--1570},
     publisher = {mathdoc},
     volume = {188},
     number = {10},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/}
}
TY  - JOUR
AU  - A. N. Shchetinin
TI  - Quotient spaces modulo tori ad transitive actions of Lie groups.~II
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1561
EP  - 1570
VL  - 188
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/
LA  - en
ID  - SM_1997_188_10_a6
ER  - 
%0 Journal Article
%A A. N. Shchetinin
%T Quotient spaces modulo tori ad transitive actions of Lie groups.~II
%J Sbornik. Mathematics
%D 1997
%P 1561-1570
%V 188
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/
%G en
%F SM_1997_188_10_a6
A. N. Shchetinin. Quotient spaces modulo tori ad transitive actions of Lie groups.~II. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1561-1570. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/