Quotient spaces modulo tori ad transitive actions of Lie groups. II
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1561-1570
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $K$ be a simple compact connected Lie group of rank greater than $8$ and let $A$ be a torus of this group in general position and of corank $1$: it is proved that the canonical transitive action of $K/A$ is essentially unique.
@article{SM_1997_188_10_a6,
author = {A. N. Shchetinin},
title = {Quotient spaces modulo tori ad transitive actions of {Lie} {groups.~II}},
journal = {Sbornik. Mathematics},
pages = {1561--1570},
year = {1997},
volume = {188},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/}
}
A. N. Shchetinin. Quotient spaces modulo tori ad transitive actions of Lie groups. II. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1561-1570. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a6/
[1] Schetinin A. N., “Faktorprostranstva po toram i tranzitivnye deistviya grupp Li”, Matem. sb., 186:9 (1995), 147–160 | MR | Zbl
[2] Kreck M., Stolz S., “Some nondeffeomorphic homeomorphic homogeneous $7$-manifolds with positive sectional curvature”, J. Differential Geom., 33 (1991), 465–486 | MR | Zbl
[3] Adams Dzh., Lektsii po gruppam Li, Nauka, M., 1979 | MR
[4] Onischik A. L., Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995 | MR | Zbl