Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1543-1560

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the homological classification of approximately finite-dimensional $C^*$-algebras. The algebras in this class for which there exists at least one non-trivial Hilbert module and those for which there exists at least one faithful Hilbert module are described. The description is given in terms of the Bratteli diagrams of the algebras in question and in terms of the ordered $K_0$-groups of these algebras.
@article{SM_1997_188_10_a5,
     author = {A. Ya. Helemskii},
     title = {Approximately finite-dimensional $C^*$-algebras with projective {Hilbert} modules, their {Bratteli} diagrams, and $K_0$-groups},
     journal = {Sbornik. Mathematics},
     pages = {1543--1560},
     publisher = {mathdoc},
     volume = {188},
     number = {10},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a5/}
}
TY  - JOUR
AU  - A. Ya. Helemskii
TI  - Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1543
EP  - 1560
VL  - 188
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a5/
LA  - en
ID  - SM_1997_188_10_a5
ER  - 
%0 Journal Article
%A A. Ya. Helemskii
%T Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups
%J Sbornik. Mathematics
%D 1997
%P 1543-1560
%V 188
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a5/
%G en
%F SM_1997_188_10_a5
A. Ya. Helemskii. Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1543-1560. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a5/