@article{SM_1997_188_10_a5,
author = {A. Ya. Helemskii},
title = {Approximately finite-dimensional $C^*$-algebras with projective {Hilbert} modules, their {Bratteli} diagrams, and $K_0$-groups},
journal = {Sbornik. Mathematics},
pages = {1543--1560},
year = {1997},
volume = {188},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a5/}
}
TY - JOUR AU - A. Ya. Helemskii TI - Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups JO - Sbornik. Mathematics PY - 1997 SP - 1543 EP - 1560 VL - 188 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a5/ LA - en ID - SM_1997_188_10_a5 ER -
%0 Journal Article %A A. Ya. Helemskii %T Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups %J Sbornik. Mathematics %D 1997 %P 1543-1560 %V 188 %N 10 %U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a5/ %G en %F SM_1997_188_10_a5
A. Ya. Helemskii. Approximately finite-dimensional $C^*$-algebras with projective Hilbert modules, their Bratteli diagrams, and $K_0$-groups. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1543-1560. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a5/
[1] Connes A., “On the cohomology of operator algebras”, J. Funct. Anal., 28 (1978), 248–253 | DOI | MR | Zbl
[2] Haagerup U., “All nuclear $C^*$-algebras are amenable”, Invent. Math., 74 (1983), 305–319 | DOI | MR | Zbl
[3] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR
[4] Khelemskii A. Ya., “Gomologicheskaya kharakterizatsiya faktorov tipa I”, Dokl. AN, 344 (1995), 454–456 | MR
[5] Helemskii A. Ya., “Homology in algebras of analysis”, Handbook of Algebra, V. II, Elsevier (to appear)
[6] Kadison R. V., Ringrose J. R., Fundamentals of the theory of operator algebras. V. II. Advanced theory, Academic Press, London, 1986 | MR | Zbl
[7] Connes A., Noncommutative geometry, Academic Press, London, 1994 | MR | Zbl
[8] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR
[9] Douglas R. G., Paulsen V. I., Hilbert modules over function algebras, Longman, New York, 1989 | MR
[10] Lance E. C., Hilbert $C^*$-modules, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[11] Bratteli O., “Inductive limits of finite dimensional $C^*$-algebras”, Trans. Amer. Math. Soc., 171 (1972), 195–234 | DOI | MR | Zbl
[12] Murphy G. J., $C^*$-algebras and operator theory, Acad. Press, London, 1990 | MR | Zbl
[13] Effros E. G., Dimensions and $C^*$-algebras, Amer. Math. Soc., Providence, 1980 | MR | Zbl
[14] Wegge-Olsen N. E., $K$-theory and $C^*$-akgebras, Oxford Univ. Press, Oxford, 1993 | MR | Zbl
[15] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR
[16] Takesaki M., “On the conjugate space of an operator algebra”, Tohoku Math. J., 10 (1958), 194–203 | DOI | MR | Zbl
[17] Selivanov Yu. V., “Biproektivnye banakhovy algebry”, Izv. AN SSSR. Ser. matem., 43 (1979), 1159–1174 | MR | Zbl
[18] Semadeni Z., Banach Spaces of Continuous Functions, PWN, Warszawa, 1971 | Zbl
[19] Kaliman Sh. I., Selivanov Yu. V., “O kogomologiyakh operatornykh algebr”, Vestn. MGU. Ser. 1. Matem., mekh., 1974, no. 5, 24–27 | MR | Zbl
[20] Khelemskii A. Ya., “O gomologicheskoi razmernosti normirovannykh modulei nad banakhovymi algebrami”, Matem. sb., 81 (1970), 430–444 | MR