Products in categories of fractions and universal inversion of homomorphisms
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1521-1541
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Main result. If finite direct products exist in a category and the class of morphisms $\Sigma$ is such that the category of fractions $[\Sigma ^{-1}]$ and the canonical functor  $\mathfrak K\to [\Sigma ^{-1}]$ preserves these products. Using this theorem analogues of the theory of matrix localization of rings are constructed for arbitrary varieties of universal algebras and for preadditive categories.
			
            
            
            
          
        
      @article{SM_1997_188_10_a4,
     author = {S. N. Tronin},
     title = {Products in categories of fractions and universal inversion of homomorphisms},
     journal = {Sbornik. Mathematics},
     pages = {1521--1541},
     publisher = {mathdoc},
     volume = {188},
     number = {10},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a4/}
}
                      
                      
                    S. N. Tronin. Products in categories of fractions and universal inversion of homomorphisms. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1521-1541. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a4/