Products in categories of fractions and universal inversion of homomorphisms
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1521-1541

Voir la notice de l'article provenant de la source Math-Net.Ru

Main result. If finite direct products exist in a category and the class of morphisms $\Sigma$ is such that the category of fractions $[\Sigma ^{-1}]$ and the canonical functor $\mathfrak K\to [\Sigma ^{-1}]$ preserves these products. Using this theorem analogues of the theory of matrix localization of rings are constructed for arbitrary varieties of universal algebras and for preadditive categories.
@article{SM_1997_188_10_a4,
     author = {S. N. Tronin},
     title = {Products in categories of fractions and universal inversion of homomorphisms},
     journal = {Sbornik. Mathematics},
     pages = {1521--1541},
     publisher = {mathdoc},
     volume = {188},
     number = {10},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a4/}
}
TY  - JOUR
AU  - S. N. Tronin
TI  - Products in categories of fractions and universal inversion of homomorphisms
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1521
EP  - 1541
VL  - 188
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a4/
LA  - en
ID  - SM_1997_188_10_a4
ER  - 
%0 Journal Article
%A S. N. Tronin
%T Products in categories of fractions and universal inversion of homomorphisms
%J Sbornik. Mathematics
%D 1997
%P 1521-1541
%V 188
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a4/
%G en
%F SM_1997_188_10_a4
S. N. Tronin. Products in categories of fractions and universal inversion of homomorphisms. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1521-1541. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a4/