Estimates of the best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the multidimensional Jackson's theorem
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1507-1520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first section the best approximations of periodic functions of one real variable by trigonometric polynomials are studied. Estimates of these approximations in terms of averaged differences are obtained. A multidimensional generalization of these estimates is presented in the second section. As a consequence. The multidimensional Jackson's theorem is proved.
@article{SM_1997_188_10_a3,
     author = {N. N. Pustovoitov},
     title = {Estimates of the~best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the~multidimensional {Jackson's} theorem},
     journal = {Sbornik. Mathematics},
     pages = {1507--1520},
     year = {1997},
     volume = {188},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a3/}
}
TY  - JOUR
AU  - N. N. Pustovoitov
TI  - Estimates of the best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the multidimensional Jackson's theorem
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1507
EP  - 1520
VL  - 188
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a3/
LA  - en
ID  - SM_1997_188_10_a3
ER  - 
%0 Journal Article
%A N. N. Pustovoitov
%T Estimates of the best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the multidimensional Jackson's theorem
%J Sbornik. Mathematics
%D 1997
%P 1507-1520
%V 188
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a3/
%G en
%F SM_1997_188_10_a3
N. N. Pustovoitov. Estimates of the best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the multidimensional Jackson's theorem. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1507-1520. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a3/

[1] Runovskii K. V., “Ob odnoi otsenke dlya integralnogo modulya gladkosti”, Izv. vuzov. Ser. matem., 1992, no. 1, 78–80 | MR | Zbl

[2] Runovskii K. V., “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0

1$”, Matem. sb., 185:8 (1994), 81–102 | Zbl

[3] Storozhenko E. A., Krotov V. G., Osvald P., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_p$, $0

1$”, Matem. sb., 98(140) (1975), 395–415 | MR | Zbl

[4] Ulyanov P. L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81:1 (1970), 104–131 | MR | Zbl

[5] Pustovoitov N. N., “Mnogomernaya teorema Dzheksona v prostranstve $L_p$”, Matem. zametki, 52:1 (1992), 105–113 | MR | Zbl

[6] Temlyakov V. N., “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN, 178, Nauka, M., 1986, 3–113 | MR | Zbl

[7] Temlyakov V. N., “O priblizhenii funktsii neskolkikh peremennykh trigonometricheskimi polinomami s garmonikami iz giperbolicheskikh krestov”, Ukr. matem. zhurn., 41:4 (1989), 518–524 | MR | Zbl