Estimates of the~best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the~multidimensional Jackson's theorem
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1507-1520
Voir la notice de l'article provenant de la source Math-Net.Ru
In the first section the best approximations of periodic functions of one real variable by trigonometric polynomials are studied. Estimates of these approximations in terms of averaged differences are obtained. A multidimensional generalization of these estimates is presented in the second section. As a consequence. The multidimensional Jackson's theorem is proved.
@article{SM_1997_188_10_a3,
author = {N. N. Pustovoitov},
title = {Estimates of the~best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the~multidimensional {Jackson's} theorem},
journal = {Sbornik. Mathematics},
pages = {1507--1520},
publisher = {mathdoc},
volume = {188},
number = {10},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a3/}
}
TY - JOUR AU - N. N. Pustovoitov TI - Estimates of the~best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the~multidimensional Jackson's theorem JO - Sbornik. Mathematics PY - 1997 SP - 1507 EP - 1520 VL - 188 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a3/ LA - en ID - SM_1997_188_10_a3 ER -
%0 Journal Article %A N. N. Pustovoitov %T Estimates of the~best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the~multidimensional Jackson's theorem %J Sbornik. Mathematics %D 1997 %P 1507-1520 %V 188 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a3/ %G en %F SM_1997_188_10_a3
N. N. Pustovoitov. Estimates of the~best approximations of periodic functions by trigonometric polynomials in terms of averaged differences and the~multidimensional Jackson's theorem. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1507-1520. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a3/