@article{SM_1997_188_10_a2,
author = {A. P. Petukhov},
title = {Periodic wavelets},
journal = {Sbornik. Mathematics},
pages = {1481--1506},
year = {1997},
volume = {188},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/}
}
A. P. Petukhov. Periodic wavelets. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1481-1506. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/
[1] Perrier V., Basdevant C., “La décomposition en ondelettes périodiques, un outil pour l'analyse de champs inhomogènes, Théorie et algorithmes”, Rech. Aérospat, 1989, no. 3, 53–67 | MR | Zbl
[2] Holschneider M., Wavelets: an analysis tool, Clarendon Press, Oxford, 1995 | MR | Zbl
[3] Koh Y. W., Lee S. L., Tan H. H., “Periodic orthogonal splines and wavelets”, Appl. Comp. Harmon. Anal., 2 (1995), 201–218 | DOI | MR | Zbl
[4] Goh S. S., Lee S. L., Shen Z., Tang W. S., Construction of Schauder decomposition on Banach spaces of periodic functions, Preprint, National Univ. Singapore, 1996 | Zbl
[5] Daubechies I., Ten lectures on wavelets, SIAM, Philadelphia, 1992 | MR
[6] Meyer Y., Wavelets and operators, Cambrige Univ. Press, Cambrige, 1992 | MR
[7] Chui C. K., Mhaskar H. N., “On trigonometric wavelets”, Constr. Approx., 9:2–3 (1993), 167–190 | DOI | MR | Zbl
[8] Edvards R., Ryady Fure v sovremennom izlozhenii, Mir, M., 1985
[9] Petukhov A. P., “O priblizhenii periodicheskikh raspredelenii v metrike Khausdorfa”, Dokl. AN, 327 (1992), 187–190 | MR
[10] Petukhov A. P., “O priblizhenii obobschennykh funktsii svertkami v metrike Khausdorfa”, Izv. RAN. Ser. matem. (to appear)
[11] Kamada M., Toraici K., Mori Riochi, “Periodic splines orthonormal bases”, J. Approx. Theory, 55 (1988), 27–34 | DOI | MR | Zbl
[12] Zheludev V. A., “Periodic splines and wavelets”, Proc. of the Conference “Math. Analysis and Signal processing” (Cairo, Jan. 2–9, 1994) | MR
[13] Zheludev V. A., “Operatsionnoe ischislenie, svyazannoe so splainami”, Dokl. AN SSSR, 313:6 (1990), 1309–1315 | Zbl
[14] Plonka G., Tasche M., “On the computation of periodic spline wavelets”, Appl. Comput. Harmon. Anal., 2 (1995), 1–14 | DOI | MR | Zbl
[15] Daubechies I., “Orthonormal basis of compactly supported wavelets”, Comm. Pure Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl
[16] de Boor C., DeVore R. A., Ron A., “On the construction of multivariate (pre)wavelets”, Constr. Approx., 9:2–3 (1993), 123–166 | DOI | MR | Zbl
[17] Chui C. K., Wang J. Z., “A general framework of compactly supported splines and wavelets”, J. Approx. Theory, 71 (1992), 263–304 | DOI | MR | Zbl