Periodic wavelets
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1481-1506 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Definitions of multiresolution analysis and wavelet decomposition for a wide range of quasi-Banach spaces of periodic distributions are suggested. Elementary properties of such MRAs are investigated. Economical algorithms of wavelet decomposition and reconstruction are presented.
@article{SM_1997_188_10_a2,
     author = {A. P. Petukhov},
     title = {Periodic wavelets},
     journal = {Sbornik. Mathematics},
     pages = {1481--1506},
     year = {1997},
     volume = {188},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/}
}
TY  - JOUR
AU  - A. P. Petukhov
TI  - Periodic wavelets
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1481
EP  - 1506
VL  - 188
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/
LA  - en
ID  - SM_1997_188_10_a2
ER  - 
%0 Journal Article
%A A. P. Petukhov
%T Periodic wavelets
%J Sbornik. Mathematics
%D 1997
%P 1481-1506
%V 188
%N 10
%U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/
%G en
%F SM_1997_188_10_a2
A. P. Petukhov. Periodic wavelets. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1481-1506. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/

[1] Perrier V., Basdevant C., “La décomposition en ondelettes périodiques, un outil pour l'analyse de champs inhomogènes, Théorie et algorithmes”, Rech. Aérospat, 1989, no. 3, 53–67 | MR | Zbl

[2] Holschneider M., Wavelets: an analysis tool, Clarendon Press, Oxford, 1995 | MR | Zbl

[3] Koh Y. W., Lee S. L., Tan H. H., “Periodic orthogonal splines and wavelets”, Appl. Comp. Harmon. Anal., 2 (1995), 201–218 | DOI | MR | Zbl

[4] Goh S. S., Lee S. L., Shen Z., Tang W. S., Construction of Schauder decomposition on Banach spaces of periodic functions, Preprint, National Univ. Singapore, 1996 | Zbl

[5] Daubechies I., Ten lectures on wavelets, SIAM, Philadelphia, 1992 | MR

[6] Meyer Y., Wavelets and operators, Cambrige Univ. Press, Cambrige, 1992 | MR

[7] Chui C. K., Mhaskar H. N., “On trigonometric wavelets”, Constr. Approx., 9:2–3 (1993), 167–190 | DOI | MR | Zbl

[8] Edvards R., Ryady Fure v sovremennom izlozhenii, Mir, M., 1985

[9] Petukhov A. P., “O priblizhenii periodicheskikh raspredelenii v metrike Khausdorfa”, Dokl. AN, 327 (1992), 187–190 | MR

[10] Petukhov A. P., “O priblizhenii obobschennykh funktsii svertkami v metrike Khausdorfa”, Izv. RAN. Ser. matem. (to appear)

[11] Kamada M., Toraici K., Mori Riochi, “Periodic splines orthonormal bases”, J. Approx. Theory, 55 (1988), 27–34 | DOI | MR | Zbl

[12] Zheludev V. A., “Periodic splines and wavelets”, Proc. of the Conference “Math. Analysis and Signal processing” (Cairo, Jan. 2–9, 1994) | MR

[13] Zheludev V. A., “Operatsionnoe ischislenie, svyazannoe so splainami”, Dokl. AN SSSR, 313:6 (1990), 1309–1315 | Zbl

[14] Plonka G., Tasche M., “On the computation of periodic spline wavelets”, Appl. Comput. Harmon. Anal., 2 (1995), 1–14 | DOI | MR | Zbl

[15] Daubechies I., “Orthonormal basis of compactly supported wavelets”, Comm. Pure Appl. Math., 41 (1988), 909–996 | DOI | MR | Zbl

[16] de Boor C., DeVore R. A., Ron A., “On the construction of multivariate (pre)wavelets”, Constr. Approx., 9:2–3 (1993), 123–166 | DOI | MR | Zbl

[17] Chui C. K., Wang J. Z., “A general framework of compactly supported splines and wavelets”, J. Approx. Theory, 71 (1992), 263–304 | DOI | MR | Zbl