Periodic wavelets
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1481-1506

Voir la notice de l'article provenant de la source Math-Net.Ru

Definitions of multiresolution analysis and wavelet decomposition for a wide range of quasi-Banach spaces of periodic distributions are suggested. Elementary properties of such MRAs are investigated. Economical algorithms of wavelet decomposition and reconstruction are presented.
@article{SM_1997_188_10_a2,
     author = {A. P. Petukhov},
     title = {Periodic wavelets},
     journal = {Sbornik. Mathematics},
     pages = {1481--1506},
     publisher = {mathdoc},
     volume = {188},
     number = {10},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/}
}
TY  - JOUR
AU  - A. P. Petukhov
TI  - Periodic wavelets
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1481
EP  - 1506
VL  - 188
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/
LA  - en
ID  - SM_1997_188_10_a2
ER  - 
%0 Journal Article
%A A. P. Petukhov
%T Periodic wavelets
%J Sbornik. Mathematics
%D 1997
%P 1481-1506
%V 188
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/
%G en
%F SM_1997_188_10_a2
A. P. Petukhov. Periodic wavelets. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1481-1506. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a2/