Measure-valued almost periodic functions and almost periodic selections of multivalued maps
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1417-1438

Voir la notice de l'article provenant de la source Math-Net.Ru

This article contains a study of Stepanov almost periodic selections of multivalued maps $t\mapsto \operatorname {supp}\mu [\,\cdot\,;t]$, $t\in \mathbb R$. It is assumed that for a.e. $t\in \mathbb R$ the measure $\mu [\,\cdot\,;t]$ is a Radon probability measure on a complete metric space and $t\mapsto \operatorname {supp}\mu [\,\cdot\,;t]$, $t\in \mathbb R$, is a measure-valued almost periodic function.
@article{SM_1997_188_10_a0,
     author = {L. I. Danilov},
     title = {Measure-valued almost periodic functions and almost periodic selections of multivalued maps},
     journal = {Sbornik. Mathematics},
     pages = {1417--1438},
     publisher = {mathdoc},
     volume = {188},
     number = {10},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a0/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Measure-valued almost periodic functions and almost periodic selections of multivalued maps
JO  - Sbornik. Mathematics
PY  - 1997
SP  - 1417
EP  - 1438
VL  - 188
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a0/
LA  - en
ID  - SM_1997_188_10_a0
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Measure-valued almost periodic functions and almost periodic selections of multivalued maps
%J Sbornik. Mathematics
%D 1997
%P 1417-1438
%V 188
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1997_188_10_a0/
%G en
%F SM_1997_188_10_a0
L. I. Danilov. Measure-valued almost periodic functions and almost periodic selections of multivalued maps. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1417-1438. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a0/