Measure-valued almost periodic functions and almost periodic selections of multivalued maps
Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1417-1438
Voir la notice de l'article provenant de la source Math-Net.Ru
This article contains a study of Stepanov almost periodic selections of multivalued maps
$t\mapsto \operatorname {supp}\mu [\,\cdot\,;t]$, $t\in \mathbb R$. It is assumed that for a.e. $t\in \mathbb R$ the measure $\mu [\,\cdot\,;t]$ is a Radon probability measure on a complete metric space and $t\mapsto \operatorname {supp}\mu [\,\cdot\,;t]$, $t\in \mathbb R$, is a measure-valued almost periodic function.
@article{SM_1997_188_10_a0,
author = {L. I. Danilov},
title = {Measure-valued almost periodic functions and almost periodic selections of multivalued maps},
journal = {Sbornik. Mathematics},
pages = {1417--1438},
publisher = {mathdoc},
volume = {188},
number = {10},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1997_188_10_a0/}
}
TY - JOUR AU - L. I. Danilov TI - Measure-valued almost periodic functions and almost periodic selections of multivalued maps JO - Sbornik. Mathematics PY - 1997 SP - 1417 EP - 1438 VL - 188 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1997_188_10_a0/ LA - en ID - SM_1997_188_10_a0 ER -
L. I. Danilov. Measure-valued almost periodic functions and almost periodic selections of multivalued maps. Sbornik. Mathematics, Tome 188 (1997) no. 10, pp. 1417-1438. http://geodesic.mathdoc.fr/item/SM_1997_188_10_a0/