Propagation of perturbation in a singular Cauchy problem for degenerate quasilinear parabolic equations
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1391-1410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Cauchy problems for a wide class of 'doubly degenerate' divergent quasilinear parabolic equations of an arbitrary order are studied. This class contains, in particular, the equations of non-stationary Newtonian and non-Newtonian filtration. For arbitrary initial functions of the lowest local regularity acceptable from the viewpoint of the theory of solubility it is proved that the rate of evolution of the supports of the generalized solutions is finite. Upper estimates of this rate are obtained which are exact both for large and small times.
@article{SM_1996_187_9_a6,
     author = {A. E. Shishkov},
     title = {Propagation of perturbation in a~singular {Cauchy} problem for degenerate quasilinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {1391--1410},
     year = {1996},
     volume = {187},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/}
}
TY  - JOUR
AU  - A. E. Shishkov
TI  - Propagation of perturbation in a singular Cauchy problem for degenerate quasilinear parabolic equations
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1391
EP  - 1410
VL  - 187
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/
LA  - en
ID  - SM_1996_187_9_a6
ER  - 
%0 Journal Article
%A A. E. Shishkov
%T Propagation of perturbation in a singular Cauchy problem for degenerate quasilinear parabolic equations
%J Sbornik. Mathematics
%D 1996
%P 1391-1410
%V 187
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/
%G en
%F SM_1996_187_9_a6
A. E. Shishkov. Propagation of perturbation in a singular Cauchy problem for degenerate quasilinear parabolic equations. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1391-1410. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/

[1] Barenblatt G. I., “O nekotorykh neustanovivshikhsya dvizheniyakh zhidkosti i gaza v poristoi srede”, Prikl. matem. i mekh., 16:1 (1952), 67–78 | MR | Zbl

[2] Barenblatt G. I., “O avtomodelnykh dvizheniyax szhimaemoi zhidkosti v poristoi srede”, Prikl. matem. i mekh., 16:6 (1952), 679–698 | MR | Zbl

[3] Bamberger A., “Etude d'une equation doublement non lineare”, Ropport Interne du Centre de Mathematiques Appliquees de I'Ecole Polytechnique, 4 (1975), 1–34

[4] Oleinik O. A., Kalashnikov A. S., Chzhou Yui-lin, “Zadacha Koshi i kraevye zadachi dlya uravnenii tipa nestatsionarnoi filtratsii”, Izv. An SSSR. Ser. matem., 22 (1958), 667–704 | MR | Zbl

[5] Kalashnikov A. S., “O vozniknovenii osobennostei u reshenii uravneniya nestatsionarnoi filtratsii”, Zhurn. vychislit. matem. i matem. fiz., 7:2 (1967), 440–443

[6] Kalashnikov A. S., “Ob uravneniyakh tipa nestatsionarnoi filtratsii s beskonechnoi skorostyu rasprostraneniya vozmuschenii”, Vestn. MGU. Ser. matem., mekh., 1972, no. 6, 45–49 | Zbl

[7] Peletier L. A., “A necessary and sufficient condition for the existence of an interface in flow through porous media”, Arch. Rational Mech. Anal., 56 (1974), 183–190 | DOI | MR | Zbl

[8] Brezis H., Friedman A., “Estimates on the support of solutions of parabolic variational inequalities”, Illinois J. Math., 20:1 (1976), 82–97 | MR | Zbl

[9] Diaz J. I., “Solutions with compact support for some degenerate parabolic problems”, Nonlinear Anal., 3 (1979), 837–847 | MR

[10] Kalashnikov A. S., “O nelineinykh uravneniyakh voznikayuschikh v teorii nestatsionarnoi filtratsii”, Tr. sem. im. I. G. Petrovskogo, 4, Izd-vo Mosk. un-ta, M., 1978, 137–146 | MR | Zbl

[11] Diaz J. I., Herrero M. A., “Estimates on the support of the solutions of some nonlinear elliptic and parabolic problems”, Proc. Roy. Soc. Edinburgh. Sect. A, 1981, no. 89, 249–258 | MR | Zbl

[12] Diaz J. I., Veron L., “Local vanishing properties of solutions of elliptic and parabolic quasilinear equations”, Trans. Amer. Math. Soc., 290:2 (1985), 787–814 | DOI | MR | Zbl

[13] Antontsev S. N., “O lokalizatsii reshenii nelineinykh vyrozhdayuschikhsya ellipticheskikh i parabolicheskikh uravnenii”, DAN SSSR, 260:6 (1981), 1289–1293 | MR | Zbl

[14] Bernis F., “Qualitative properties for some nonlinear higher order degenerate parabolic equations”, Houston J. Math., 14:3 (1988), 319–352 | MR | Zbl

[15] Oleinik O. A., Iosifyan G. A., “Analog printsipa Sen-Venana i edinstvennost reshenii kraevykh zadach v neogranichennykh oblastyakh dlya parabolicheskikh uravnenii”, UMN, 31:6 (1976), 142–166 | MR | Zbl

[16] Shishkov A. E., “Ob otsenkakh skorosti rasprostraneniya vozmuschenii v kvazilineinykh divergentnykh vyrozhdayuschikhsya parabolicheskikh uravneniyakh proizvolnogo poryadka”, Ukr. matem. zhurn., 44:10 (1992), 1451–1456 | MR | Zbl

[17] Shishkov A. E., “Dinamika geometrii nositelya obobschennogo resheniya kvazilineinogo parabolicheskogo uravneniya vysokogo poryadka”, Differents. uravneniya, 29:3 (1993), 537–547 | MR | Zbl

[18] Benilan Ph., Crandall M. G., “The continuous dependence on $\varphi$ of the solutions of $u_t-\nobreak \Delta\varphi(u)=\nobreak 0$”, Indiana Univ. Math. J., 30 (1981), 161–177 | DOI | MR | Zbl

[19] Veron L., “Effects regularisants de semi-groupes non lineares dans des espaces de Banach”, Ann. Fac. Sci. Toulouse Math. (6), 1979, no. 1, 171–200 | MR | Zbl

[20] Herrero M. A., Vazquez J. L., “Asymptotic behaviour of solutions of a strongly nonlinear parabolic problem”, Ann. Fac. Sci. Toulouse Math. (6), 1981, no. 3, 113–127 | MR | Zbl

[21] Bernis F., “Existence results for “doubly” nonlinear higher order parabolic equations on unbounded domains”, Math. Ann., 279 (1988), 373–394 | DOI | MR | Zbl

[22] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[23] Knerr B. F., “The porous medium equation in one dimension”, Trans. Amer. Math. Soc., 234 (1977), 381–415 | DOI | MR | Zbl

[24] Friedman A., Kamin S., “The asymptotic behaviour of a gas in an $n$-dimensional porous medium”, Trans. Amer. Math. Soc., 262 (1980), 551–563 | DOI | MR | Zbl

[25] Herrero M. A., Vazquez J. L., “On the propagation properties of a nonlinear degenerate parabolic equation”, Comm. Partial Differential Equations, 7 (1982), 1381–1402 | DOI | MR | Zbl

[26] Di Benedetto E., Herrero M. A., “On the Cauchy problem and initial traces for a degenerate parabolic equation”, Trans. Amer. Math. Soc., 314:1 (1989), 187–224 | DOI | MR

[27] Di Benedetto E., “On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13:3 (1986), 487–535 | MR

[28] Benilan Ph., Crandall M. G., Pierre M., “Solutions of the porous medium equation in $\mathbf{R}^n$ under optimal conditions on initial values”, Indiana Univ. Math. J., 33 (1984), 51–87 | DOI | MR | Zbl