Propagation of perturbation in a~singular Cauchy problem for degenerate quasilinear parabolic equations
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1391-1410

Voir la notice de l'article provenant de la source Math-Net.Ru

Cauchy problems for a wide class of 'doubly degenerate' divergent quasilinear parabolic equations of an arbitrary order are studied. This class contains, in particular, the equations of non-stationary Newtonian and non-Newtonian filtration. For arbitrary initial functions of the lowest local regularity acceptable from the viewpoint of the theory of solubility it is proved that the rate of evolution of the supports of the generalized solutions is finite. Upper estimates of this rate are obtained which are exact both for large and small times.
@article{SM_1996_187_9_a6,
     author = {A. E. Shishkov},
     title = {Propagation of perturbation in a~singular {Cauchy} problem for degenerate quasilinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {1391--1410},
     publisher = {mathdoc},
     volume = {187},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/}
}
TY  - JOUR
AU  - A. E. Shishkov
TI  - Propagation of perturbation in a~singular Cauchy problem for degenerate quasilinear parabolic equations
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1391
EP  - 1410
VL  - 187
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/
LA  - en
ID  - SM_1996_187_9_a6
ER  - 
%0 Journal Article
%A A. E. Shishkov
%T Propagation of perturbation in a~singular Cauchy problem for degenerate quasilinear parabolic equations
%J Sbornik. Mathematics
%D 1996
%P 1391-1410
%V 187
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/
%G en
%F SM_1996_187_9_a6
A. E. Shishkov. Propagation of perturbation in a~singular Cauchy problem for degenerate quasilinear parabolic equations. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1391-1410. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/