Propagation of perturbation in a~singular Cauchy problem for degenerate quasilinear parabolic equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1391-1410
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Cauchy problems for a wide class of 'doubly degenerate' divergent quasilinear parabolic equations of an arbitrary order are studied. This class contains, in particular, the equations of non-stationary Newtonian and non-Newtonian filtration. For arbitrary initial functions of the lowest local regularity acceptable from the viewpoint of the theory of solubility it is proved that the rate of evolution of  the supports of the generalized solutions is finite. Upper estimates of this rate are  obtained which are exact both for large and small times.
			
            
            
            
          
        
      @article{SM_1996_187_9_a6,
     author = {A. E. Shishkov},
     title = {Propagation of perturbation in a~singular {Cauchy} problem for degenerate quasilinear parabolic equations},
     journal = {Sbornik. Mathematics},
     pages = {1391--1410},
     publisher = {mathdoc},
     volume = {187},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/}
}
                      
                      
                    TY - JOUR AU - A. E. Shishkov TI - Propagation of perturbation in a~singular Cauchy problem for degenerate quasilinear parabolic equations JO - Sbornik. Mathematics PY - 1996 SP - 1391 EP - 1410 VL - 187 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/ LA - en ID - SM_1996_187_9_a6 ER -
A. E. Shishkov. Propagation of perturbation in a~singular Cauchy problem for degenerate quasilinear parabolic equations. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1391-1410. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a6/
