Local exact controllability of the~two-dimensional Navier--Stokes equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1355-1390
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Omega \subset \mathbb R^2$ be a bounded domain with boundary $\partial \Omega$ consisting of two disjoint closed curves $\Gamma _0$ and $\Gamma _1$ such that $\Gamma _0$ is connected and $\Gamma _1\ne \varnothing$. The Navier–Stokes system $\partial _tv(t,x)-\Delta v+(v,\nabla )v+\nabla p=f(t,x)$, $\operatorname {div}v=0$ is considered in  $\Omega$ with boundary and initial conditions $(v,\nu )\big |_{\Gamma _0}=\operatorname {rot}v\big |_{\Gamma _0}=0$ and $v\big|_{t=0}=v_0(x)$ (here $t\in (0,T)$, $x\in \Omega$, and $\nu$ is the outward normal to $\Gamma_0$). Let $\widehat v(t,x)$ be a solution  of this system such that $\widehat v$ satisfies the indicated boundary conditions on $\Gamma_0$ and  $\|\widehat v(0,\,\cdot \,)-v_0\|_{W^2_2(\Omega )}\varepsilon$, where $\varepsilon =\varepsilon (\widehat v)\ll 1$. Then the existence of a control $u(t,x)$ on $(0,T)\times \Gamma _1$ with the following properties is proved: the solution $v(t,x)$ of the Navier–Stokes system such that $(v,\nu )\big |_{\Gamma _0}=\operatorname {rot}v\big |_{\Gamma _0}=0$,
$v\big |_{t=0}=v_0(x)$ and $v\big |_{\Gamma _1}=u$, coincides with $\widehat v(T,\,\cdot \,)$ for $t = T$, that is, $v(T,x)=\widehat v(T,x)$. In particular, if $f$ and $\widehat v$ do not depend on $t$ and $\widehat v(x)$ is an unstable steady-state solution, then it  follows from the above result that one can suppress the occurrence of turbulence by some control $\alpha$ on $\Gamma_1$. An analogous result is established in the case when $\Gamma _0=\partial \Omega$ and $\alpha(t,x)$ is a distributed control concentrated in an arbitrary subdomain $\omega \subset \Omega$.
			
            
            
            
          
        
      @article{SM_1996_187_9_a5,
     author = {A. V. Fursikov and Yu. S. \`Emanuilov},
     title = {Local exact controllability of the~two-dimensional {Navier--Stokes} equations},
     journal = {Sbornik. Mathematics},
     pages = {1355--1390},
     publisher = {mathdoc},
     volume = {187},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a5/}
}
                      
                      
                    TY - JOUR AU - A. V. Fursikov AU - Yu. S. Èmanuilov TI - Local exact controllability of the~two-dimensional Navier--Stokes equations JO - Sbornik. Mathematics PY - 1996 SP - 1355 EP - 1390 VL - 187 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a5/ LA - en ID - SM_1996_187_9_a5 ER -
A. V. Fursikov; Yu. S. Èmanuilov. Local exact controllability of the~two-dimensional Navier--Stokes equations. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1355-1390. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a5/
