Local exact controllability of the two-dimensional Navier–Stokes equations
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1355-1390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Omega \subset \mathbb R^2$ be a bounded domain with boundary $\partial \Omega$ consisting of two disjoint closed curves $\Gamma _0$ and $\Gamma _1$ such that $\Gamma _0$ is connected and $\Gamma _1\ne \varnothing$. The Navier–Stokes system $\partial _tv(t,x)-\Delta v+(v,\nabla )v+\nabla p=f(t,x)$, $\operatorname {div}v=0$ is considered in $\Omega$ with boundary and initial conditions $(v,\nu )\big |_{\Gamma _0}=\operatorname {rot}v\big |_{\Gamma _0}=0$ and $v\big|_{t=0}=v_0(x)$ (here $t\in (0,T)$, $x\in \Omega$, and $\nu$ is the outward normal to $\Gamma_0$). Let $\widehat v(t,x)$ be a solution of this system such that $\widehat v$ satisfies the indicated boundary conditions on $\Gamma_0$ and $\|\widehat v(0,\,\cdot \,)-v_0\|_{W^2_2(\Omega )}<\varepsilon$, where $\varepsilon =\varepsilon (\widehat v)\ll 1$. Then the existence of a control $u(t,x)$ on $(0,T)\times \Gamma _1$ with the following properties is proved: the solution $v(t,x)$ of the Navier–Stokes system such that $(v,\nu )\big |_{\Gamma _0}=\operatorname {rot}v\big |_{\Gamma _0}=0$, $v\big |_{t=0}=v_0(x)$ and $v\big |_{\Gamma _1}=u$, coincides with $\widehat v(T,\,\cdot \,)$ for $t = T$, that is, $v(T,x)=\widehat v(T,x)$. In particular, if $f$ and $\widehat v$ do not depend on $t$ and $\widehat v(x)$ is an unstable steady-state solution, then it follows from the above result that one can suppress the occurrence of turbulence by some control $\alpha$ on $\Gamma_1$. An analogous result is established in the case when $\Gamma _0=\partial \Omega$ and $\alpha(t,x)$ is a distributed control concentrated in an arbitrary subdomain $\omega \subset \Omega$.
@article{SM_1996_187_9_a5,
     author = {A. V. Fursikov and Yu. S. \`Emanuilov},
     title = {Local exact controllability of the~two-dimensional {Navier{\textendash}Stokes} equations},
     journal = {Sbornik. Mathematics},
     pages = {1355--1390},
     year = {1996},
     volume = {187},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a5/}
}
TY  - JOUR
AU  - A. V. Fursikov
AU  - Yu. S. Èmanuilov
TI  - Local exact controllability of the two-dimensional Navier–Stokes equations
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1355
EP  - 1390
VL  - 187
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a5/
LA  - en
ID  - SM_1996_187_9_a5
ER  - 
%0 Journal Article
%A A. V. Fursikov
%A Yu. S. Èmanuilov
%T Local exact controllability of the two-dimensional Navier–Stokes equations
%J Sbornik. Mathematics
%D 1996
%P 1355-1390
%V 187
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a5/
%G en
%F SM_1996_187_9_a5
A. V. Fursikov; Yu. S. Èmanuilov. Local exact controllability of the two-dimensional Navier–Stokes equations. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1355-1390. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a5/

[1] Lions J.-L., “Are there connections between turbulence and controllability?”, $9^e$ Conférence internationale de l'INRIA (Antibes. 12–15 juin 1990) | Zbl

[2] Fursikov A. V., Imanuvilov O. Yu., “On controllability of certain systems simulating a fluid flow”, Flow Control. IMA Vol. Math. Appl., 68, ed. M. D. Gunzburger, Springer-Verlag, New-York, 1995, 149–184 | MR | Zbl

[3] Fursikov A. V., Imanuvilov O. Yu., “On exact boundary zero-controllability of two-dimensional Navier–Stokes equations”, Acta Appl. Math., 37 (1994), 67–76 | DOI | MR | Zbl

[4] Fursikov A. V., “Exact boundary zero controllability of three dimensional Navier–Stokes equations”, J. Dynam. Control Syst., 1:3 (1995), 325–350 | DOI | MR | Zbl

[5] Emanuilov O. Yu., “Granichnaya upravlyaemost parabolicheskikh uravnenii”, Matem. sb., 186:6 (1995), 109–132 | MR | Zbl

[6] Coron J.-M., “Contrôlabilité exacte frontiere de l'équation d'Euler des fluids parfaits incompresibles bidimensionnesls”, C. R. Acad. Sci. Paris. Sér. I. Math., 317 (1993), 271–276 | MR | Zbl

[7] Lions Zh.-L., Mazhenes E., Neodnorodnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[8] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[9] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[10] Temam R., Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[11] Emanuilov O. Yu., “Tochnaya upravlyaemost polulineinymi parabolicheskimi uravneniyami”, Vestnik Rossiiskogo Un-ta Druzhby Narodov. Ser. matem., 1994, no. 1, 109–116 | MR | Zbl

[12] Emanuilov O. Yu., “Granichnaya upravlyaemost parabolicheskimi uravneniyami”, UMN, 48:3 (1993), 211–212 | MR