Products of $\pi$-nilpotent subgroups
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1349-1354

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ and $B$ be $\pi$-nilpotent subgroups of a finite group $G$ and suppose that $(|G:A|,p)=(|G:B|,p)=1$ for all $p\in \pi$. It is proved that if $G$ is a product of $A$ and $B$ then $G$ is a $\pi$-nilpotent group.
@article{SM_1996_187_9_a4,
     author = {V. N. Tyutyanov},
     title = {Products of $\pi$-nilpotent subgroups},
     journal = {Sbornik. Mathematics},
     pages = {1349--1354},
     publisher = {mathdoc},
     volume = {187},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a4/}
}
TY  - JOUR
AU  - V. N. Tyutyanov
TI  - Products of $\pi$-nilpotent subgroups
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1349
EP  - 1354
VL  - 187
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a4/
LA  - en
ID  - SM_1996_187_9_a4
ER  - 
%0 Journal Article
%A V. N. Tyutyanov
%T Products of $\pi$-nilpotent subgroups
%J Sbornik. Mathematics
%D 1996
%P 1349-1354
%V 187
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a4/
%G en
%F SM_1996_187_9_a4
V. N. Tyutyanov. Products of $\pi$-nilpotent subgroups. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1349-1354. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a4/