Modular functions and transcendence questions
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1319-1348

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove results on the transcendence degree of a field generated by numbers connected with the modular function $j(\tau )$. In particular, we show that $\pi$ and $e^\pi$ are algebraically independent and we prove Bertrand's conjecture on algebraic independence over $\mathbb Q$ of the values at algebraic points of a modular function and its derivatives.
@article{SM_1996_187_9_a3,
     author = {Yu. V. Nesterenko},
     title = {Modular functions and transcendence questions},
     journal = {Sbornik. Mathematics},
     pages = {1319--1348},
     publisher = {mathdoc},
     volume = {187},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - Modular functions and transcendence questions
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1319
EP  - 1348
VL  - 187
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/
LA  - en
ID  - SM_1996_187_9_a3
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T Modular functions and transcendence questions
%J Sbornik. Mathematics
%D 1996
%P 1319-1348
%V 187
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/
%G en
%F SM_1996_187_9_a3
Yu. V. Nesterenko. Modular functions and transcendence questions. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1319-1348. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/