Modular functions and transcendence questions
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1319-1348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove results on the transcendence degree of a field generated by numbers connected with the modular function $j(\tau )$. In particular, we show that $\pi$ and $e^\pi$ are algebraically independent and we prove Bertrand's conjecture on algebraic independence over $\mathbb Q$ of the values at algebraic points of a modular function and its derivatives.
@article{SM_1996_187_9_a3,
     author = {Yu. V. Nesterenko},
     title = {Modular functions and transcendence questions},
     journal = {Sbornik. Mathematics},
     pages = {1319--1348},
     year = {1996},
     volume = {187},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - Modular functions and transcendence questions
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1319
EP  - 1348
VL  - 187
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/
LA  - en
ID  - SM_1996_187_9_a3
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T Modular functions and transcendence questions
%J Sbornik. Mathematics
%D 1996
%P 1319-1348
%V 187
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/
%G en
%F SM_1996_187_9_a3
Yu. V. Nesterenko. Modular functions and transcendence questions. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1319-1348. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/

[1] Lang S., Elliptic functions, Addison Wesley, Reading, 1973 | MR

[2] Schneider Th., “Arithmetische Untersuchungen elliptischer Integrale”, Math. Ann., 113 (1937), 1–13 | DOI | MR

[3] Ramanujan S., “On certain arithmetical functions”, Trans. Cambridge Philosoph. Soc., 22:9 (1916), 159–184; Collected Papers of Srinivasa Ramanujan, Chelsea Publishing Co., New York, 1962, 136–162

[4] Mahler K., “On algebraic differential equations satisfied by automorphic functions”, J. Austral. Math. Soc., 10 (1969), 445–450 | DOI | MR | Zbl

[5] Masser D., “Elliptic functions and transcendence”, Lecture Notes in Math., 437, Springer-Verlag, Berlin, 1975 | MR | Zbl

[6] Mahler K., “Remarks on a paper by W. Schwarz”, J. Number Theory, 1 (1969), 512–521 | DOI | MR | Zbl

[7] Barré-Sirieix K., Diaz G., Gramain F., Philibert G., “Une preuve de la conjecture de Mahler–Manin”, Invent. Math., 124 (1996), 1–9 | DOI | MR | Zbl

[8] Chudnovskii G. V., “Algebraicheskaya nezavisimost postoyannykh, svyazannykh s eksponentsialnoi i ellipticheskoi funktsiyami”, Dokl. AN USSR, 1976, no. 8, 698–701

[9] Waldschmidt M., “Les travaux de G. V. Chudnovskii sur les nombres transcendants”, Lecture Notes in Math., 567, Springer-Verlag, Berlin, 1977, 274–292 | MR

[10] Bertrand D., “Fonctions modulaires, courbes de Tate et indépendance algébrique”, Semin. Delange–Pisot–Poitou, 19e année. 1977/78, no. 36 | MR

[11] Shidlovskii A. B., Transtsendentnye chisla, Nauka, M., 1987 | MR

[12] Serr Zh.-P., Kurs arifmetiki, Mir, M., 1972 | MR | Zbl

[13] Philippon P., “Critères pour l'indépendance algébrique”, Publ. Math. IHES, 1986, no. 64, 5–52 | MR | Zbl

[14] Ably M., “Résultats quantitatifs d'indépendance algébrique pour les groupes algebriques”, J. Number Theory, 42:2 (1992), 194–231 | DOI | MR | Zbl

[15] Nesterenko Yu. V., “Ob algebraicheskoi nezavisimosti algebraicheskikh stepenei algebraicheskikh chisel”, Matem. sb., 123 (165):4 (1984), 435–459 | MR | Zbl

[16] Nesterenko Yu., “Estimates for the number of zeros of certain functions”, New Advances in Transcendence Theory, ed. A. Baker, Cambridge Univ. Press, Cambridge, 1988, 263–269 | MR

[17] Nesterenko Yu. V., “Otsenki chisla nulei funktsii nekotorykh klassov”, Acta Arith., LIII:1 (1989), 29–46 | MR

[18] Nesterenko Yu. V., “Otsenki poryadkov nulei funktsii odnogo klassa i ikh prilozhenie v teorii transtsendentnykh chisel”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 253–284 | MR | Zbl

[19] Nesterenko Yu. V., “Otsenki kharakteristicheskoi funktsii prostogo ideala”, Matem. sb., 123 (165):1 (1984), 11–34 | MR | Zbl