Modular functions and transcendence questions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1319-1348
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove results on the transcendence degree of a field generated by numbers connected with the modular function $j(\tau )$. In particular, we show that $\pi$ and $e^\pi$ are algebraically independent and we prove Bertrand's conjecture on algebraic independence over $\mathbb Q$ of the values at algebraic points of a modular function and its derivatives.
			
            
            
            
          
        
      @article{SM_1996_187_9_a3,
     author = {Yu. V. Nesterenko},
     title = {Modular functions and transcendence questions},
     journal = {Sbornik. Mathematics},
     pages = {1319--1348},
     publisher = {mathdoc},
     volume = {187},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/}
}
                      
                      
                    Yu. V. Nesterenko. Modular functions and transcendence questions. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1319-1348. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a3/
