Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1301-1318

Voir la notice de l'article provenant de la source Math-Net.Ru

Two methods for computing the integrals of rational functions over $\mathbb R^n$ are considered. The first is applicable to differentials with rational antiderivatives and uses the interpretation of $\mathbb R^n$ as a chain of integration in some toric compactification. The second method is based on the theory of multidimensional residues and the multidimensional version of the Sokhotskii formula for the jump of an integral.
@article{SM_1996_187_9_a2,
     author = {T. O. Ermolaeva and A. K. Tsikh},
     title = {Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues},
     journal = {Sbornik. Mathematics},
     pages = {1301--1318},
     publisher = {mathdoc},
     volume = {187},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a2/}
}
TY  - JOUR
AU  - T. O. Ermolaeva
AU  - A. K. Tsikh
TI  - Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1301
EP  - 1318
VL  - 187
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a2/
LA  - en
ID  - SM_1996_187_9_a2
ER  - 
%0 Journal Article
%A T. O. Ermolaeva
%A A. K. Tsikh
%T Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues
%J Sbornik. Mathematics
%D 1996
%P 1301-1318
%V 187
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a2/
%G en
%F SM_1996_187_9_a2
T. O. Ermolaeva; A. K. Tsikh. Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1301-1318. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a2/