Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1301-1318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two methods for computing the integrals of rational functions over $\mathbb R^n$ are considered. The first is applicable to differentials with rational antiderivatives and uses the interpretation of $\mathbb R^n$ as a chain of integration in some toric compactification. The second method is based on the theory of multidimensional residues and the multidimensional version of the Sokhotskii formula for the jump of an integral.
@article{SM_1996_187_9_a2,
     author = {T. O. Ermolaeva and A. K. Tsikh},
     title = {Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues},
     journal = {Sbornik. Mathematics},
     pages = {1301--1318},
     year = {1996},
     volume = {187},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a2/}
}
TY  - JOUR
AU  - T. O. Ermolaeva
AU  - A. K. Tsikh
TI  - Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1301
EP  - 1318
VL  - 187
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a2/
LA  - en
ID  - SM_1996_187_9_a2
ER  - 
%0 Journal Article
%A T. O. Ermolaeva
%A A. K. Tsikh
%T Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues
%J Sbornik. Mathematics
%D 1996
%P 1301-1318
%V 187
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a2/
%G en
%F SM_1996_187_9_a2
T. O. Ermolaeva; A. K. Tsikh. Integration of rational functions over $\mathbb R^n$ by means of toric compactifications and multidimensional residues. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1301-1318. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a2/

[1] Khua R., Teplits V., Gomologii i feinmanovskie integraly, Mir, M., 1969

[2] Fam F., Vvedenie v topologicheskie issledovaniya osobennostei Landau, Mir, M., 1967

[3] Sergeev A. G., “Teoriya tvistorov i klassicheskie kalibrovochnye polya”, Monopoli: Topologicheskie i variatsionnye metody, Sb. statei 1983–1989 gg., Mir, M., 1989, 492–555 | MR

[4] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[5] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963

[6] Yuzhakov A. P., “Odin klass dvoinykh integralov, vychislyaemykh s pomoschyu kratnykh vychetov”, Izv. vuzov. Matematika, 1987, no. 9, 78–81 | MR | Zbl

[7] Zhdanov O. N., “O vychislenii integralov ratsionalnykh funktsii $n$ peremennykh s pomoschyu kratnykh vychetov”, Izv. vuzov. Matematika, 1987, no. 8, 82–84 | MR | Zbl

[8] Tsikh A. K., Mnogomernye vychety i ikh primeneniya, Nauka, Novosibirsk, 1988 | MR | Zbl

[9] Tsikh A. K., “Integraly ratsionalnykh funktsii po prostranstvu $\mathbb R^n$”, DAN SSSR, 307:6 (1989), 1325–1329 | MR

[10] Khovanskii A. G., “Mnogogranniki Nyutona i toricheskie mnogoobraziya”, Funkts. analiz i ego prilozh., 11:4 (1977), 56–67 | MR

[11] Khovanskii A. G., “Mnogogranniki Nyutona (razreshenie osobennostei)”, Itogi nauki i tekhniki. Sovr. probl. matem., 22, VINITI, M., 1983, 207–239 | MR

[12] Fulton W., Introduction to Toric Varieties, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[13] Ermolaeva T. O., “Vychislenie integralov ratsionalnykh funktsii po prostranstvu $\mathbb R^2$”, Matematika, Materialy XXXI Mezhdunarodnoi nauchnoi studencheskoi konferentsii, Izd-vo Novosib. un-ta, Novosibirsk, 1993, 37–39

[14] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[15] Lere Zh., Differentsialnoe i integralnoe ischislenie na kompleksnom analiticheskom mnogoobrazii, IL, M., 1961

[16] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[17] Milnor Dzh., Osobye tochki kompleksnykh giperpoverkhnostei, Mir, M., 1971 | MR | Zbl

[18] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Monodromiya i asimptotika integralov, Nauka, M., 1984 | MR

[19] Aizenberg L. A., Yuzhakov A. P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979

[20] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, t. 3, Fizmatgiz, M., 1960 | Zbl