Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1261-1281
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we consider two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour consisting of two saddle fixed points and two heteroclinic trajectories: a structurally stable one and a structurally unstable one. Such diffeomorphisms are divided into three classes, depending on the structure of the set $N$ of trajectories lying entirely in a neighbourhood of the contour. For diffeomorphisms of the first and the second classes $N$ can be fully described. We show that  the diffeomorphisms of the third class have $\Omega$-moduli, which are continuous topological conjugacy invariants on the set of non-wandering trajectories. We explicitly  show two such moduli: $\theta$ and $\tau_0$. We discuss sufficient conditions of $\Omega$-conjugacy for rational $\theta$ and we also prove that on the bifurcation surface of diffeomorphisms of the third class the systems with a denumerable set of $\Omega$-moduli are dense.
			
            
            
            
          
        
      @article{SM_1996_187_9_a0,
     author = {S. V. Gonchenko},
     title = {Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour},
     journal = {Sbornik. Mathematics},
     pages = {1261--1281},
     publisher = {mathdoc},
     volume = {187},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/}
}
                      
                      
                    TY - JOUR AU - S. V. Gonchenko TI - Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour JO - Sbornik. Mathematics PY - 1996 SP - 1261 EP - 1281 VL - 187 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/ LA - en ID - SM_1996_187_9_a0 ER -
%0 Journal Article %A S. V. Gonchenko %T Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour %J Sbornik. Mathematics %D 1996 %P 1261-1281 %V 187 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/ %G en %F SM_1996_187_9_a0
S. V. Gonchenko. Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1261-1281. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/
