Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1261-1281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour consisting of two saddle fixed points and two heteroclinic trajectories: a structurally stable one and a structurally unstable one. Such diffeomorphisms are divided into three classes, depending on the structure of the set $N$ of trajectories lying entirely in a neighbourhood of the contour. For diffeomorphisms of the first and the second classes $N$ can be fully described. We show that the diffeomorphisms of the third class have $\Omega$-moduli, which are continuous topological conjugacy invariants on the set of non-wandering trajectories. We explicitly show two such moduli: $\theta$ and $\tau_0$. We discuss sufficient conditions of $\Omega$-conjugacy for rational $\theta$ and we also prove that on the bifurcation surface of diffeomorphisms of the third class the systems with a denumerable set of $\Omega$-moduli are dense.
@article{SM_1996_187_9_a0,
     author = {S. V. Gonchenko},
     title = {Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour},
     journal = {Sbornik. Mathematics},
     pages = {1261--1281},
     year = {1996},
     volume = {187},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/}
}
TY  - JOUR
AU  - S. V. Gonchenko
TI  - Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1261
EP  - 1281
VL  - 187
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/
LA  - en
ID  - SM_1996_187_9_a0
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%T Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour
%J Sbornik. Mathematics
%D 1996
%P 1261-1281
%V 187
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/
%G en
%F SM_1996_187_9_a0
S. V. Gonchenko. Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1261-1281. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/

[1] Palis J., “A differentiable invariant of topological conjugacies and moduli of stability”, Asterisque, 51 (1978), 335–346 | MR | Zbl

[2] Gonchenko S. V., “Moduli sistem s negrubymi gomoklinicheskimi traektoriyami (sluchai diffeomorfizmov i vektornykh polei)”, Metody kachestvennoi teorii i teorii bifurkatsii, Mezhvuz. tematich. sb. nauch. tr., Gork. gos. un-t, Gorkii, 1989, 34–49 | MR

[3] Gonchenko S. V., Shilnikov L. P., “Invarianty $\Omega$-sopryazhennosti diffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Ukr. matem. zhurn., 42:2 (1990), 153–159 | MR | Zbl

[4] Gonchenko S. V., Shilnikov L. P., “O modulyakh sistem s negruboi gomoklinicheskoi krivoi Puankare”, Izv. RAN. Ser. matem., 56:6 (1992), 1165–1197 | MR | Zbl

[5] Gonchenko S. V., Turaev D. V., Shilnikov L. P., “O modelyakh s negruboi gomoklinicheskoi krivoi Puankare”, DAN SSSR, 320:2 (1991), 269–272 | MR | Zbl

[6] Gonchenko S. V., Shil'nikov L. P., Turaev D. V., “On models with non-rough Poincare homoclinic curves”, Phys. D, 62:1–4 (1993), 1–14 | DOI | MR | Zbl

[7] Gavrilov N. K., Shilnikov L. P., “O trekhmernykh dinamicheskikh sistemakh, blizkikh k sisteme s negruboi gomoklinicheskoi krivoi. I; II”, Matem. sb., 88:4 (1972), 475–492 ; 90:1 (1973), 139–157 | MR | Zbl | MR

[8] Gonchenko S. V., “Netrivialnye giperbolicheskie podmnozhestva sistem s negruboi gomoklinicheskoi krivoi”, Metody kachestvennoi teorii differentsialnykh uravnenii, Mezhvuz. tematich. sb. nauch. tr., Gork. gos. un-t, Gorkii, 1984, 89–102 | MR

[9] Gonchenko S. V., Shilnikov L. P., “O dinamicheskikh sistemakh s negrubymi gomoklinicheskimi krivymi”, DAN SSSR, 286:5 (1986), 1049–1053 | MR | Zbl

[10] Shilnikov L. P., “Ob odnoi zadache Puankare–Birkgofa”, Matem. sb., 74(116):3 (1967), 378–397 | MR | Zbl

[11] Gavrilov N. K., “O trekhmernykh dinamicheskikh sistemakh, imeyuschikh negrubyi gomoklinicheskii kontur”, Matem. zametki, 14:5 (1973), 687–696 | MR | Zbl

[12] Shilnikov L. P., “Ob odnom sluchae suschestvovaniya schetnogo mnozhestva periodicheskikh dvizhenii”, DAN SSSR, 160:3 (1965), 558–561 | MR | Zbl

[13] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napravleniya, 5, VINITI, M., 1986, 5–218 | MR

[14] Togawa Y., “A modulus of $3$-dimensional vector fields”, Dynamical System Ergodic Theory, 7 (1987), 295–303 | MR

[15] Shilnikov L. P., “K voprosu o strukture rasshirennoi okrestnosti grubogo sostoyaniya ravnovesiya tipa sedlo-fokus”, Matem. sb., 81 (123):1 (1970), 92–103 | MR | Zbl

[16] Ovsyannikov I. M., Shilnikov L. P., “O sistemakh s gomoklinicheskoi krivoi sedlo-fokusa”, Matem. sb., 130 (172):4 (1986), 552–570 | MR

[17] Ovsyannikov I. M., Shilnikov L. P., “Sistemy s gomoklinicheskoi krivoi mnogomernogo sedlo-fokusa i spiralnyi khaos”, Matem. sb., 182:7 (1991), 1043–1073 | MR | Zbl

[18] Gonchenko S. V., “K voprosu ob usloviyakh sopryazhennosti dvumernykh diffeomorfizmov s negruboi gomoklinicheskoi traektoriei”, Metody kachestvennoi teorii i teorii bifurkatsii, Mezhvuz. tematich. sb. nauch. tr., Gork. gos. un-t, Gorkii, 1990, 5–19 | MR