Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour
Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1261-1281

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider two-dimensional diffeomorphisms with a structurally unstable heteroclinic contour consisting of two saddle fixed points and two heteroclinic trajectories: a structurally stable one and a structurally unstable one. Such diffeomorphisms are divided into three classes, depending on the structure of the set $N$ of trajectories lying entirely in a neighbourhood of the contour. For diffeomorphisms of the first and the second classes $N$ can be fully described. We show that the diffeomorphisms of the third class have $\Omega$-moduli, which are continuous topological conjugacy invariants on the set of non-wandering trajectories. We explicitly show two such moduli: $\theta$ and $\tau_0$. We discuss sufficient conditions of $\Omega$-conjugacy for rational $\theta$ and we also prove that on the bifurcation surface of diffeomorphisms of the third class the systems with a denumerable set of $\Omega$-moduli are dense.
@article{SM_1996_187_9_a0,
     author = {S. V. Gonchenko},
     title = {Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour},
     journal = {Sbornik. Mathematics},
     pages = {1261--1281},
     publisher = {mathdoc},
     volume = {187},
     number = {9},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/}
}
TY  - JOUR
AU  - S. V. Gonchenko
TI  - Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1261
EP  - 1281
VL  - 187
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/
LA  - en
ID  - SM_1996_187_9_a0
ER  - 
%0 Journal Article
%A S. V. Gonchenko
%T Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour
%J Sbornik. Mathematics
%D 1996
%P 1261-1281
%V 187
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/
%G en
%F SM_1996_187_9_a0
S. V. Gonchenko. Moduli of $\Omega$-conjugacy of two-dimensional diffeomorphisms with a~structurally unstable heteroclinic contour. Sbornik. Mathematics, Tome 187 (1996) no. 9, pp. 1261-1281. http://geodesic.mathdoc.fr/item/SM_1996_187_9_a0/