Homogenization of non-linear Dirichlet problems in perforated domains of general type
Sbornik. Mathematics, Tome 187 (1996) no. 8, pp. 1229-1260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A sequence of boundary-value problems for a second-order non-linear elliptic equation in domains $\Omega_s\subset\Omega\subset\mathbb R^n$ and $s=1,2,\dots$ is considered. No geometric assumptions on the $\Omega_s$ are made. The existence of a sequence $r_s$ approaching zero as $s\to\infty$ is assumed such that $C_m\bigl(K(x_0,r)\setminus \Omega_s\bigr)\leqslant Ar^n$ for $r\geqslant r_s>0$ and for an arbitrary point $x_0\in\Omega$. Here $K(x_0,r)$ is the $2r$-cube with centre at $x_0$ and $C_m$ is the $m$-capacity. The conditions imposed on the coefficients of the equation ensure that the energy space is $W_m^1$. The strong convergence of the solutions $u_s(x)$ of the problems under consideration is proved in $W_p^1$ for $p; a corrector in $W_m^1$ and a homogenized boundary-value problem are constructed. These results are based on an asymptotic expansion for the sequence $u_s(x)$ and on a new pointwise estimate of the solution of a certain model non-linear problem.
@article{SM_1996_187_8_a4,
     author = {I. V. Skrypnik},
     title = {Homogenization of non-linear {Dirichlet} problems in perforated domains of general type},
     journal = {Sbornik. Mathematics},
     pages = {1229--1260},
     year = {1996},
     volume = {187},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_8_a4/}
}
TY  - JOUR
AU  - I. V. Skrypnik
TI  - Homogenization of non-linear Dirichlet problems in perforated domains of general type
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1229
EP  - 1260
VL  - 187
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_8_a4/
LA  - en
ID  - SM_1996_187_8_a4
ER  - 
%0 Journal Article
%A I. V. Skrypnik
%T Homogenization of non-linear Dirichlet problems in perforated domains of general type
%J Sbornik. Mathematics
%D 1996
%P 1229-1260
%V 187
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1996_187_8_a4/
%G en
%F SM_1996_187_8_a4
I. V. Skrypnik. Homogenization of non-linear Dirichlet problems in perforated domains of general type. Sbornik. Mathematics, Tome 187 (1996) no. 8, pp. 1229-1260. http://geodesic.mathdoc.fr/item/SM_1996_187_8_a4/

[1] Marchenko V. A., Khruslov E. Ya., Granichnye zadachi v oblastyakh s melkozernistoi granitsei, Naukova dumka, Kiev, 1974

[2] Skrypnik I. V., “Kvazilineinaya zadacha Dirikhle v oblastyakh s melkozernistoi granitsei”, Dokl. AN USSR. Ser. A, 1982, no. 2, 21–25 | MR | Zbl

[3] Skrypnik I. V., “Potochechnaya otsenka nekotorykh emkostnykh potentsialov”, Obschaya teoriya granichnykh zadach, Naukova dumka, Kiev, 1983, 198–296 | MR

[4] Skrypnik I. V., Nonlinear Elliptic Boundary Value Problems, Teubner-Verlag, Leipzig, 1986 | MR | Zbl

[5] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[6] Skrypnik I. V., “Usrednenie nelineinykh zadach Dirikhle v oblastyakh s kanalami”, DAN, 315:4 (1990), 793–797 | MR | Zbl

[7] Skrypnik I. V., “Asimptoticheskoe povedenie reshenii nelineinykh ellipticheskikh zadach v perforirovannykh oblastyakh”, Matem. sb., 184:10 (1993), 67–90 | MR | Zbl

[8] Dal Maso G., Murat F., “Dirichlet problems in perforated domains for homogeneous monotone operators on $H_0^1$”, Calculus of Variations Homogenization and Continuum Mechanics, World Scientific, Singapore, 1994, 177–202 | Zbl

[9] Dal Maso G., Murat F., Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Preprint SISSA, Trieste, 1994

[10] Kovalevskii A. A., “O $G$-skhodimosti operatorov Dirikhle v peremennykh oblastyakh”, Dokl. AN Ukrainy. Ser. A, 1993, no. 5, 13–17 | MR | Zbl

[11] Pankratov L. S., O skhodimosti reshenii variatsionnykh zadach s slabo svyazannymi oblastyami, Preprint FTINT, Kharkov, 1988

[12] Dal Maso G., Garroni A., “New results on the asymptotic behaviour of Dirichlet problems in perforated domains”, Math. Models Methods Appl. Sci., 3 (1994), 373–407 | MR | Zbl

[13] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[14] Skrypnik I. V., Naumova M. A., “Potochechnye otsenki reshenii kvazilineinykh ellipticheskikh zadach v oblastyakh s tonkoi polostyu”, Ukr. matem. zhurn., 44:10 (1992), 1417–1432 | MR | Zbl