Homogenization of non-linear Dirichlet problems in perforated domains of general type
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 8, pp. 1229-1260
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A sequence of boundary-value problems for a second-order non-linear elliptic equation in domains $\Omega_s\subset\Omega\subset\mathbb R^n$ and $s=1,2,\dots$ is considered. No geometric assumptions on the $\Omega_s$ are made. The existence of a sequence $r_s$ approaching zero as $s\to\infty$ is assumed such that $C_m\bigl(K(x_0,r)\setminus
\Omega_s\bigr)\leqslant Ar^n$ for $r\geqslant r_s>0$ and for an arbitrary point 
$x_0\in\Omega$. Here $K(x_0,r)$ is the $2r$-cube with centre at $x_0$ and $C_m$ is the $m$-capacity. The conditions imposed on the coefficients of the equation ensure that the energy space is $W_m^1$. The strong convergence of the solutions $u_s(x)$ of the problems under consideration is proved in $W_p^1$ for $p$; a corrector in $W_m^1$ and a homogenized boundary-value problem are constructed. These results are based on an asymptotic expansion for the sequence $u_s(x)$ and on a new pointwise estimate of the solution of a certain model non-linear problem.
			
            
            
            
          
        
      @article{SM_1996_187_8_a4,
     author = {I. V. Skrypnik},
     title = {Homogenization of non-linear {Dirichlet} problems in perforated domains of general type},
     journal = {Sbornik. Mathematics},
     pages = {1229--1260},
     publisher = {mathdoc},
     volume = {187},
     number = {8},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_8_a4/}
}
                      
                      
                    I. V. Skrypnik. Homogenization of non-linear Dirichlet problems in perforated domains of general type. Sbornik. Mathematics, Tome 187 (1996) no. 8, pp. 1229-1260. http://geodesic.mathdoc.fr/item/SM_1996_187_8_a4/
