Connectedness and homogenization. Examples of fractal conductivity
Sbornik. Mathematics, Tome 187 (1996) no. 8, pp. 1109-1147

Voir la notice de l'article provenant de la source Math-Net.Ru

A detailed study of the concept of $p$-connectedness is carried out; in particular, a criterion for the $p$-connectedness of two disjoint domains with Lipschitz boundaries and with fractal contact is formulated. New examples of open periodic sets with positive effective conductivity are constructed on the basis of this analysis. A new class of objects, elliptic operators in a Euclidean space with measure, is introduced; the corresponding concept of $p$-connectedness is introduced and a generalized theory of homogenization is developed.
@article{SM_1996_187_8_a0,
     author = {V. V. Zhikov},
     title = {Connectedness and homogenization. {Examples} of fractal conductivity},
     journal = {Sbornik. Mathematics},
     pages = {1109--1147},
     publisher = {mathdoc},
     volume = {187},
     number = {8},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_8_a0/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - Connectedness and homogenization. Examples of fractal conductivity
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1109
EP  - 1147
VL  - 187
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_8_a0/
LA  - en
ID  - SM_1996_187_8_a0
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T Connectedness and homogenization. Examples of fractal conductivity
%J Sbornik. Mathematics
%D 1996
%P 1109-1147
%V 187
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_8_a0/
%G en
%F SM_1996_187_8_a0
V. V. Zhikov. Connectedness and homogenization. Examples of fractal conductivity. Sbornik. Mathematics, Tome 187 (1996) no. 8, pp. 1109-1147. http://geodesic.mathdoc.fr/item/SM_1996_187_8_a0/