Relation between the irreducible representations of Lie algebras and the irreducible representations of $p$-groups
Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1039-1043
Cet article a éte moissonné depuis la source Math-Net.Ru
A proof is given of a theorem stating that there is a correspondence between the irreducible complex representations of a finite $p$-group and the irreducible representations of its associated nilpotent Lie algebra over a field of characteristic $p$. As a corollary it is found that the sets of degrees of the irreducible representations are the same.
@article{SM_1996_187_7_a4,
author = {A. V. Matveev},
title = {Relation between the~irreducible representations of {Lie} algebras and the~irreducible representations of $p$-groups},
journal = {Sbornik. Mathematics},
pages = {1039--1043},
year = {1996},
volume = {187},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/}
}
TY - JOUR AU - A. V. Matveev TI - Relation between the irreducible representations of Lie algebras and the irreducible representations of $p$-groups JO - Sbornik. Mathematics PY - 1996 SP - 1039 EP - 1043 VL - 187 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/ LA - en ID - SM_1996_187_7_a4 ER -
A. V. Matveev. Relation between the irreducible representations of Lie algebras and the irreducible representations of $p$-groups. Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1039-1043. http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/
[1] Strade H., “Darstellungen auflösbarer Lie-$p$-Algebren”, Math. Ann., 232:1 (1978), 15–32 | DOI | MR | Zbl
[2] Andreev K. K., “Nekotorye dostatochnye usloviya lokalnoi nilpotentnosti v gruppakh”, Trudy Mosk. in-ta elektr. mashinostr., 1974, no. 30, 19–31 | MR
[3] Basmanova S. A., “O svyazi mezhdu neprivodimymi predstavleniyami konechnoi $p$-gruppy i assotsiirovannoi s nei algebroi Li”, Vestn. MGU. Ser. 1. Matem., mekh., 1986, no. 5, 58–60 | MR | Zbl
[4] Leng S., Algebra, Mir, M., 1968