Relation between the~irreducible representations of Lie algebras and the~irreducible representations of $p$-groups
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1039-1043
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A proof is given of a theorem stating that there is a correspondence between the irreducible complex representations of a finite $p$-group and the irreducible representations of its associated nilpotent Lie algebra over a field of characteristic $p$. As a corollary it is found that the sets of degrees of the irreducible representations are the same.
			
            
            
            
          
        
      @article{SM_1996_187_7_a4,
     author = {A. V. Matveev},
     title = {Relation between the~irreducible representations of {Lie} algebras and the~irreducible representations of $p$-groups},
     journal = {Sbornik. Mathematics},
     pages = {1039--1043},
     publisher = {mathdoc},
     volume = {187},
     number = {7},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/}
}
                      
                      
                    TY - JOUR AU - A. V. Matveev TI - Relation between the~irreducible representations of Lie algebras and the~irreducible representations of $p$-groups JO - Sbornik. Mathematics PY - 1996 SP - 1039 EP - 1043 VL - 187 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/ LA - en ID - SM_1996_187_7_a4 ER -
%0 Journal Article %A A. V. Matveev %T Relation between the~irreducible representations of Lie algebras and the~irreducible representations of $p$-groups %J Sbornik. Mathematics %D 1996 %P 1039-1043 %V 187 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/ %G en %F SM_1996_187_7_a4
A. V. Matveev. Relation between the~irreducible representations of Lie algebras and the~irreducible representations of $p$-groups. Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1039-1043. http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/
