Relation between the~irreducible representations of Lie algebras and the~irreducible representations of $p$-groups
Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1039-1043

Voir la notice de l'article provenant de la source Math-Net.Ru

A proof is given of a theorem stating that there is a correspondence between the irreducible complex representations of a finite $p$-group and the irreducible representations of its associated nilpotent Lie algebra over a field of characteristic $p$. As a corollary it is found that the sets of degrees of the irreducible representations are the same.
@article{SM_1996_187_7_a4,
     author = {A. V. Matveev},
     title = {Relation between the~irreducible representations of {Lie} algebras and the~irreducible representations of $p$-groups},
     journal = {Sbornik. Mathematics},
     pages = {1039--1043},
     publisher = {mathdoc},
     volume = {187},
     number = {7},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/}
}
TY  - JOUR
AU  - A. V. Matveev
TI  - Relation between the~irreducible representations of Lie algebras and the~irreducible representations of $p$-groups
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1039
EP  - 1043
VL  - 187
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/
LA  - en
ID  - SM_1996_187_7_a4
ER  - 
%0 Journal Article
%A A. V. Matveev
%T Relation between the~irreducible representations of Lie algebras and the~irreducible representations of $p$-groups
%J Sbornik. Mathematics
%D 1996
%P 1039-1043
%V 187
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/
%G en
%F SM_1996_187_7_a4
A. V. Matveev. Relation between the~irreducible representations of Lie algebras and the~irreducible representations of $p$-groups. Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1039-1043. http://geodesic.mathdoc.fr/item/SM_1996_187_7_a4/