A rationality criterion for conic bundles
Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1021-1038

Voir la notice de l'article provenant de la source Math-Net.Ru

It is that a three-dimensional variety $X$ that is a conic bundle $\pi\colon X\to S$ in the Mori sense has a base with at most double rational singularities of type $A_n$. A rationality criterion is proved subject to this assumption in the case when the discriminant curve $C\subset S$ is large enough, for example, for the case when $p_a(C)>18$.
@article{SM_1996_187_7_a3,
     author = {V. A. Iskovskikh},
     title = {A rationality criterion for conic bundles},
     journal = {Sbornik. Mathematics},
     pages = {1021--1038},
     publisher = {mathdoc},
     volume = {187},
     number = {7},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_7_a3/}
}
TY  - JOUR
AU  - V. A. Iskovskikh
TI  - A rationality criterion for conic bundles
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 1021
EP  - 1038
VL  - 187
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_7_a3/
LA  - en
ID  - SM_1996_187_7_a3
ER  - 
%0 Journal Article
%A V. A. Iskovskikh
%T A rationality criterion for conic bundles
%J Sbornik. Mathematics
%D 1996
%P 1021-1038
%V 187
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_7_a3/
%G en
%F SM_1996_187_7_a3
V. A. Iskovskikh. A rationality criterion for conic bundles. Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1021-1038. http://geodesic.mathdoc.fr/item/SM_1996_187_7_a3/