A rationality criterion for conic bundles
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1021-1038
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is that a three-dimensional variety $X$ that is a conic bundle $\pi\colon X\to S$ in the Mori sense has a base with at most double rational singularities of type $A_n$. A rationality criterion is proved subject to this assumption in the case when the discriminant curve $C\subset S$ is large enough, for example, for the case when $p_a(C)>18$.
			
            
            
            
          
        
      @article{SM_1996_187_7_a3,
     author = {V. A. Iskovskikh},
     title = {A rationality criterion for conic bundles},
     journal = {Sbornik. Mathematics},
     pages = {1021--1038},
     publisher = {mathdoc},
     volume = {187},
     number = {7},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_7_a3/}
}
                      
                      
                    V. A. Iskovskikh. A rationality criterion for conic bundles. Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 1021-1038. http://geodesic.mathdoc.fr/item/SM_1996_187_7_a3/
