Sequences of rectangular Fourier sums of continuous functions with given majorants of the~mixed moduli of smoothness
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 981-1004
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Approximation by the rectangular Fourier sums $S_N(f)$ is studied for classes of functions of several variables defined in terms of the orders of decrease of the mixed moduli of smoothness. The problem of the existence of a single (independent of $N$) function $f$ on which the order of the approximation in the corresponding class is realized is solved.
			
            
            
            
          
        
      @article{SM_1996_187_7_a1,
     author = {O. V. Davydov},
     title = {Sequences of rectangular {Fourier} sums of continuous functions with given majorants of the~mixed moduli of smoothness},
     journal = {Sbornik. Mathematics},
     pages = {981--1004},
     publisher = {mathdoc},
     volume = {187},
     number = {7},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_7_a1/}
}
                      
                      
                    TY - JOUR AU - O. V. Davydov TI - Sequences of rectangular Fourier sums of continuous functions with given majorants of the~mixed moduli of smoothness JO - Sbornik. Mathematics PY - 1996 SP - 981 EP - 1004 VL - 187 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_7_a1/ LA - en ID - SM_1996_187_7_a1 ER -
%0 Journal Article %A O. V. Davydov %T Sequences of rectangular Fourier sums of continuous functions with given majorants of the~mixed moduli of smoothness %J Sbornik. Mathematics %D 1996 %P 981-1004 %V 187 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1996_187_7_a1/ %G en %F SM_1996_187_7_a1
O. V. Davydov. Sequences of rectangular Fourier sums of continuous functions with given majorants of the~mixed moduli of smoothness. Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 981-1004. http://geodesic.mathdoc.fr/item/SM_1996_187_7_a1/
