On isotopic and discrete realizations of maps of an~$n$-dimensional sphere in Euclidean space
Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 951-980

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider questions of whether a compact space can be embedded in a Euclidean space. The problem of embedding an '$S^n$-like' compact space in $\mathbb R^{2n}$ is solved affirmatively under certain restrictions on the dimension $n$. We clarify the relations between the realization problem and areas of homotopy theory and differential topology.
@article{SM_1996_187_7_a0,
     author = {P. M. Akhmet'ev},
     title = {On isotopic and discrete realizations of maps of an~$n$-dimensional sphere in {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {951--980},
     publisher = {mathdoc},
     volume = {187},
     number = {7},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_7_a0/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - On isotopic and discrete realizations of maps of an~$n$-dimensional sphere in Euclidean space
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 951
EP  - 980
VL  - 187
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_7_a0/
LA  - en
ID  - SM_1996_187_7_a0
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T On isotopic and discrete realizations of maps of an~$n$-dimensional sphere in Euclidean space
%J Sbornik. Mathematics
%D 1996
%P 951-980
%V 187
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_7_a0/
%G en
%F SM_1996_187_7_a0
P. M. Akhmet'ev. On isotopic and discrete realizations of maps of an~$n$-dimensional sphere in Euclidean space. Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 951-980. http://geodesic.mathdoc.fr/item/SM_1996_187_7_a0/