On isotopic and discrete realizations of maps of an $n$-dimensional sphere in Euclidean space
Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 951-980 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider questions of whether a compact space can be embedded in a Euclidean space. The problem of embedding an '$S^n$-like' compact space in $\mathbb R^{2n}$ is solved affirmatively under certain restrictions on the dimension $n$. We clarify the relations between the realization problem and areas of homotopy theory and differential topology.
@article{SM_1996_187_7_a0,
     author = {P. M. Akhmet'ev},
     title = {On isotopic and discrete realizations of maps of an~$n$-dimensional sphere in {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {951--980},
     year = {1996},
     volume = {187},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_7_a0/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
TI  - On isotopic and discrete realizations of maps of an $n$-dimensional sphere in Euclidean space
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 951
EP  - 980
VL  - 187
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_7_a0/
LA  - en
ID  - SM_1996_187_7_a0
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%T On isotopic and discrete realizations of maps of an $n$-dimensional sphere in Euclidean space
%J Sbornik. Mathematics
%D 1996
%P 951-980
%V 187
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1996_187_7_a0/
%G en
%F SM_1996_187_7_a0
P. M. Akhmet'ev. On isotopic and discrete realizations of maps of an $n$-dimensional sphere in Euclidean space. Sbornik. Mathematics, Tome 187 (1996) no. 7, pp. 951-980. http://geodesic.mathdoc.fr/item/SM_1996_187_7_a0/

[1] Schepin E. V., Shtanko M. A., “Spektralnyi kriterii vlozhimosti kompaktov v evklidovy prostranstva”, Leningradskaya Mezhdunarodnaya Topologicheskaya Konferentsiya, t. II, Nauka, M., 1983, 135–142 | MR

[2] Sieklucki K., “Realization of mappings”, Fund. Math., 65:3 (1969), 325–343 | MR | Zbl

[3] Daverman R. J., “Problems about finite dimensional manifolds”, Open problems in topology, eds. G. van Mill, Y. M. Reed, North-Holland, Amsterdam, 1990 | MR

[4] Gromov M., Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, 9, Springer-Verlag, Berlin, 1986 | MR

[5] Akhmetiev P., Szucs A., On the Hopf invariant in the homotopy groups of spheres. Geometric approach, Preprint, 1994

[6] Szucs A., “Cobordism of immersions and singular maps, loop spaces and multiple points”, Geometric and Algebraic topology, Banach center publications, 18, PWN-Polish sientific publishers, Warszawa, 1986 | MR

[7] Szucs A., “Geometrical proof of a theorem on suspension in homotopy groups of spheres”, Topology, Colloquia Mathematica Soc. Janos Bolyai, 55, Pecs, Hungary, 1989, 501–505 | MR

[8] Anderson D. A., Munkholm H. J., Foundations of boundedly controlled algebraic and geometric topology, Lecture Notes in Math., 1323, Springer-Verlag, Berlin–New York, 1988 | MR | Zbl

[9] Haefliger A., “Plongements differentiables dans le domaine stable”, Comment. Math. Helv., 37 (1962–1963), 155–176 | DOI | MR | Zbl

[10] Repovs D., Skopenkov A. B., Scepin E. V., On embeddability of $X\times I$ into Euclidean space, Preprint No 331. September 27, 1993, Ljubljana, 421 pp. | MR

[11] Francis G. K., A Topological Picturebook, Springer-Verlag, Berlin, 1987, 1988 | MR

[12] Szucs A., “Note on doble points of immersions”, Manuscripta Math., 76 (1992), 251–256 | DOI | MR

[13] Milnor J. W., Stasheff J. P., Characteristic classes, Princeton, New-Jersy, 1974 | MR

[14] Freedman M., “Quadruple points of 3-manifolds in $\mathbb R^4$”, Comment. Math. Helvetici, 53 (1978), 385–394 | DOI | MR | Zbl

[15] Akhmetev P. M., “Gladkie pogruzheniya mnogoobrazii malykh razmernostei”, Matem. sb., 185:10 (1994), 3–26 | Zbl

[16] Akhmetev P. M., “Prem-otobrazheniya, tochki troekratnogo samoperesecheniya orientirovannoi poverkhnosti i teorema Rokhlina o signature”, Matem. zametki, 59:6 (1996), 803–810 | MR | Zbl

[17] Massey W. S., “Higher order linking numbers”, Conf. on Algebraic topology, University of Chicago, 174–205 | MR | Zbl

[18] Guillou L., Marin A. (eds.), A la recherche de la topologie perdue, Progress in Math., 62, Birkhauser, 1986

[19] Kirby R., The topology of 4-manifolds, Lecture Notes in Math., 1374, 1989 | MR | Zbl

[20] Cord Mc. C. Mc., “Embedding $\mathbb P$-like continua in manifold”, Canad. J. Math., 19 (1976), 321–332

[21] Keesling J., Wilson D. C., “Embedding $T^n$-like continua in Euclidean Space”, Topology Appl., 21 (1985), 241–249 | DOI | MR | Zbl

[22] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR

[23] Cohen R. L., “The immersion conjecture for differentiable manifolds”, Bull. Amer. Math. Soc., 76 (1970), 763–766 | DOI | MR

[24] Akhmetev P. M., “Reshenie zadachi realizatsii otobrazhenii $n$-sfery v prostranstve $\mathbb R^{2n}$”, Tr. MIAN, 212, Nauka, M., 1996, 35–43