On Efimov surfaces that are rigid 'in the~small'
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 903-915

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider rigid (in the class of analytic infinitesimal bendings) analytic surfaces with an isolated point of flattening and positive Gaussian curvature around this point. It is proved that such surfaces are rigid 'in the small' in the class $C^\infty$. The proof is based on the study of the asymptotic behaviour of the field of infinitesimal bending in a neighbourhood of the point of flattening and subsequent application of the techniques of the theory of generalized Cauchy–Riemann systems with a singularity in the coefficients.
@article{SM_1996_187_6_a7,
     author = {Z. D. Usmanov},
     title = {On {Efimov} surfaces that are rigid 'in the~small'},
     journal = {Sbornik. Mathematics},
     pages = {903--915},
     publisher = {mathdoc},
     volume = {187},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a7/}
}
TY  - JOUR
AU  - Z. D. Usmanov
TI  - On Efimov surfaces that are rigid 'in the~small'
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 903
EP  - 915
VL  - 187
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a7/
LA  - en
ID  - SM_1996_187_6_a7
ER  - 
%0 Journal Article
%A Z. D. Usmanov
%T On Efimov surfaces that are rigid 'in the~small'
%J Sbornik. Mathematics
%D 1996
%P 903-915
%V 187
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a7/
%G en
%F SM_1996_187_6_a7
Z. D. Usmanov. On Efimov surfaces that are rigid 'in the~small'. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 903-915. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a7/