$L_p$-estimates of the resolvent of the Stokes operator in infinite tubes
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 881-902 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-known $L_p$-estimates of the resolvent of the Stokes operator in bounded domains are extended to the case of an infinite tube. It is proved, in particular, that the Stokes operator generates an analytic subgroup in $L_p(\mathfrak D)$, $1. To solve the equations defining the resolvent of the Stokes operator, a representation of the pressure as the sum of a terms fading at infinity and a term with non-zero pressure differential is obtained. An explicit formula for the pressure differential is presented.
@article{SM_1996_187_6_a6,
     author = {S. V. Revina and V. I. Yudovich},
     title = {$L_p$-estimates of the~resolvent of {the~Stokes} operator in infinite tubes},
     journal = {Sbornik. Mathematics},
     pages = {881--902},
     year = {1996},
     volume = {187},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/}
}
TY  - JOUR
AU  - S. V. Revina
AU  - V. I. Yudovich
TI  - $L_p$-estimates of the resolvent of the Stokes operator in infinite tubes
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 881
EP  - 902
VL  - 187
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/
LA  - en
ID  - SM_1996_187_6_a6
ER  - 
%0 Journal Article
%A S. V. Revina
%A V. I. Yudovich
%T $L_p$-estimates of the resolvent of the Stokes operator in infinite tubes
%J Sbornik. Mathematics
%D 1996
%P 881-902
%V 187
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/
%G en
%F SM_1996_187_6_a6
S. V. Revina; V. I. Yudovich. $L_p$-estimates of the resolvent of the Stokes operator in infinite tubes. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 881-902. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/

[1] Yudovich V. I., Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo RGU, Rostov-na-Donu, 1984 | Zbl

[2] Shvarts Dzh., “Zamechanie o neravenstvakh tipa Kalderona–Zigmunda dlya funktsii so znacheniyami v vektornom prostranstve”, Matematika, 7:4 (1963), 57–79

[3] Iooss G., Mielke A., Demay Y., “Theory of steady Ginzburg–Landau equation, in hydrodynamic stability problem”, European J. Mech. B Fluids, 8:3 (1989), 229–268 | MR | Zbl

[4] Vanderbauwhede A., Iooss G., “Center manifold theory in infinite dimensions”, Dynam. Report. (N.S.), 1 (1992), 125–163 | MR | Zbl

[5] Burak T., “On semigroups generated by restrictions of elliptic operators to invariant subspaces”, Israel J. Math., 12:3 (1972), 79–93 | DOI | MR | Zbl

[6] Laks P. D., “Teorema Fragmena–Lindelefa v garmonicheskom analize i ee primenenie k nekotorym voprosam teorii ellipticheskikh uravnenii”, Matematika, 1959, no. 3–4, 107–132

[7] Ladyzhenskaya O. A., Solonnikov V. A., “O nakhozhdenii reshenii kraevykh zadach dlya statsionarnykh uravnenii Stoksa i Nave–Stoksa, imeyuschikh neogranichennyi integral Dirikhle”, Zapiski nauch. sem. LOMI, 96, Nauka, L., 1980, 117–160 | MR | Zbl

[8] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M.–L., 1948

[9] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[10] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno-gladkoi granitsei, Nauka, M., 1991

[11] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye preobrazovaniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | Zbl

[12] Nikonova (Revina) S. V., Yudovich V. I., $L_p$-otsenki rezolventy operatora Stoksa v beskonechnom tsilindre, Dep. v VINITI 1993, No. 3050-B93