$L_p$-estimates of the~resolvent of the~Stokes operator in infinite tubes
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 881-902
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The well-known $L_p$-estimates of the resolvent of the Stokes operator in bounded domains are extended to the case of an infinite tube. It is proved, in particular, that the Stokes operator generates an analytic subgroup in $L_p(\mathfrak D)$, $1$. To solve the equations defining the resolvent of the Stokes operator, a representation of the pressure as the sum of a terms fading at infinity and a term with non-zero pressure differential is obtained. An explicit formula for the pressure differential is presented.
			
            
            
            
          
        
      @article{SM_1996_187_6_a6,
     author = {S. V. Revina and V. I. Yudovich},
     title = {$L_p$-estimates of the~resolvent of {the~Stokes} operator in infinite tubes},
     journal = {Sbornik. Mathematics},
     pages = {881--902},
     publisher = {mathdoc},
     volume = {187},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/}
}
                      
                      
                    S. V. Revina; V. I. Yudovich. $L_p$-estimates of the~resolvent of the~Stokes operator in infinite tubes. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 881-902. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/
