$L_p$-estimates of the~resolvent of the~Stokes operator in infinite tubes
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 881-902

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known $L_p$-estimates of the resolvent of the Stokes operator in bounded domains are extended to the case of an infinite tube. It is proved, in particular, that the Stokes operator generates an analytic subgroup in $L_p(\mathfrak D)$, $1$. To solve the equations defining the resolvent of the Stokes operator, a representation of the pressure as the sum of a terms fading at infinity and a term with non-zero pressure differential is obtained. An explicit formula for the pressure differential is presented.
@article{SM_1996_187_6_a6,
     author = {S. V. Revina and V. I. Yudovich},
     title = {$L_p$-estimates of the~resolvent of {the~Stokes} operator in infinite tubes},
     journal = {Sbornik. Mathematics},
     pages = {881--902},
     publisher = {mathdoc},
     volume = {187},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/}
}
TY  - JOUR
AU  - S. V. Revina
AU  - V. I. Yudovich
TI  - $L_p$-estimates of the~resolvent of the~Stokes operator in infinite tubes
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 881
EP  - 902
VL  - 187
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/
LA  - en
ID  - SM_1996_187_6_a6
ER  - 
%0 Journal Article
%A S. V. Revina
%A V. I. Yudovich
%T $L_p$-estimates of the~resolvent of the~Stokes operator in infinite tubes
%J Sbornik. Mathematics
%D 1996
%P 881-902
%V 187
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/
%G en
%F SM_1996_187_6_a6
S. V. Revina; V. I. Yudovich. $L_p$-estimates of the~resolvent of the~Stokes operator in infinite tubes. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 881-902. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a6/