On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by Newton's law on the~boundary of the~cavities
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 869-880
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For $\varepsilon \in (0,1)$ let $\Omega _\varepsilon =\Omega \cap \varepsilon \omega$, where  $\Omega \subset \mathbb R^d$ is a bounded domain $\varepsilon \omega$ is the set obtained by an $\varepsilon ^{-1}$-fold contraction from an unbounded domain $\omega$ with a $1$-periodic structure, the set $\mathbb R^d \setminus \omega$ being dispersible. Then $\partial \Omega _\varepsilon =\Gamma _\varepsilon \cup S_\varepsilon$, where $\Gamma _\varepsilon$ is the external boundary of $\Omega _\varepsilon$ and $S_\varepsilon$ is the boundary of the cavities lying in $\Omega _\varepsilon$. 
We study the effect of the exponentially damping (as $\varepsilon \to 0$) influence of a non-zero temperature regime established on $\Gamma _\varepsilon$ on the temperature distribution inside an isotropic body occupying $\Omega _\varepsilon$ under the condition that the heat exchange on $S_\varepsilon$ with the medium filling the cavities of the body follows Newton's law with coefficient of proportionality $a_\varepsilon (x)=a(x/\varepsilon )$, where $a(y)$ is a $1$-periodic function defined on $\partial \omega~$ such that $\int _S a(y)\,ds>0$,   if $S=\partial \omega \cap \bigl \{x\in \mathbb R^d:|x_i|1/2,\ i=\overline {1,d}\bigr \}$.
			
            
            
            
          
        
      @article{SM_1996_187_6_a5,
     author = {S. E. Pastukhova},
     title = {On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by {Newton's} law on the~boundary of the~cavities},
     journal = {Sbornik. Mathematics},
     pages = {869--880},
     publisher = {mathdoc},
     volume = {187},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/}
}
                      
                      
                    TY - JOUR AU - S. E. Pastukhova TI - On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by Newton's law on the~boundary of the~cavities JO - Sbornik. Mathematics PY - 1996 SP - 869 EP - 880 VL - 187 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/ LA - en ID - SM_1996_187_6_a5 ER -
%0 Journal Article %A S. E. Pastukhova %T On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by Newton's law on the~boundary of the~cavities %J Sbornik. Mathematics %D 1996 %P 869-880 %V 187 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/ %G en %F SM_1996_187_6_a5
S. E. Pastukhova. On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by Newton's law on the~boundary of the~cavities. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 869-880. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/
