On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by Newton's law on the~boundary of the~cavities
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 869-880

Voir la notice de l'article provenant de la source Math-Net.Ru

For $\varepsilon \in (0,1)$ let $\Omega _\varepsilon =\Omega \cap \varepsilon \omega$, where $\Omega \subset \mathbb R^d$ is a bounded domain $\varepsilon \omega$ is the set obtained by an $\varepsilon ^{-1}$-fold contraction from an unbounded domain $\omega$ with a $1$-periodic structure, the set $\mathbb R^d \setminus \omega$ being dispersible. Then $\partial \Omega _\varepsilon =\Gamma _\varepsilon \cup S_\varepsilon$, where $\Gamma _\varepsilon$ is the external boundary of $\Omega _\varepsilon$ and $S_\varepsilon$ is the boundary of the cavities lying in $\Omega _\varepsilon$. We study the effect of the exponentially damping (as $\varepsilon \to 0$) influence of a non-zero temperature regime established on $\Gamma _\varepsilon$ on the temperature distribution inside an isotropic body occupying $\Omega _\varepsilon$ under the condition that the heat exchange on $S_\varepsilon$ with the medium filling the cavities of the body follows Newton's law with coefficient of proportionality $a_\varepsilon (x)=a(x/\varepsilon )$, where $a(y)$ is a $1$-periodic function defined on $\partial \omega~$ such that $\int _S a(y)\,ds>0$, if $S=\partial \omega \cap \bigl \{x\in \mathbb R^d:|x_i|1/2,\ i=\overline {1,d}\bigr \}$.
@article{SM_1996_187_6_a5,
     author = {S. E. Pastukhova},
     title = {On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by {Newton's} law on the~boundary of the~cavities},
     journal = {Sbornik. Mathematics},
     pages = {869--880},
     publisher = {mathdoc},
     volume = {187},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by Newton's law on the~boundary of the~cavities
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 869
EP  - 880
VL  - 187
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/
LA  - en
ID  - SM_1996_187_6_a5
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by Newton's law on the~boundary of the~cavities
%J Sbornik. Mathematics
%D 1996
%P 869-880
%V 187
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/
%G en
%F SM_1996_187_6_a5
S. E. Pastukhova. On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by Newton's law on the~boundary of the~cavities. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 869-880. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/