On the nature of the temperature distribution in a perforated body with given values on the external boundary under conditions of heat transfer by Newton's law on the boundary of the cavities
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 869-880 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For $\varepsilon \in (0,1)$ let $\Omega _\varepsilon =\Omega \cap \varepsilon \omega$, where $\Omega \subset \mathbb R^d$ is a bounded domain $\varepsilon \omega$ is the set obtained by an $\varepsilon ^{-1}$-fold contraction from an unbounded domain $\omega$ with a $1$-periodic structure, the set $\mathbb R^d \setminus \omega$ being dispersible. Then $\partial \Omega _\varepsilon =\Gamma _\varepsilon \cup S_\varepsilon$, where $\Gamma _\varepsilon$ is the external boundary of $\Omega _\varepsilon$ and $S_\varepsilon$ is the boundary of the cavities lying in $\Omega _\varepsilon$. We study the effect of the exponentially damping (as $\varepsilon \to 0$) influence of a non-zero temperature regime established on $\Gamma _\varepsilon$ on the temperature distribution inside an isotropic body occupying $\Omega _\varepsilon$ under the condition that the heat exchange on $S_\varepsilon$ with the medium filling the cavities of the body follows Newton's law with coefficient of proportionality $a_\varepsilon (x)=a(x/\varepsilon )$, where $a(y)$ is a $1$-periodic function defined on $\partial \omega~$ such that $\int _S a(y)\,ds>0$, if $S=\partial \omega \cap \bigl \{x\in \mathbb R^d:|x_i|<1/2,\ i=\overline {1,d}\bigr \}$.
@article{SM_1996_187_6_a5,
     author = {S. E. Pastukhova},
     title = {On the nature of the~temperature distribution in a~perforated body with given values on the~external boundary under conditions of heat transfer by {Newton's} law on the~boundary of the~cavities},
     journal = {Sbornik. Mathematics},
     pages = {869--880},
     year = {1996},
     volume = {187},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - On the nature of the temperature distribution in a perforated body with given values on the external boundary under conditions of heat transfer by Newton's law on the boundary of the cavities
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 869
EP  - 880
VL  - 187
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/
LA  - en
ID  - SM_1996_187_6_a5
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T On the nature of the temperature distribution in a perforated body with given values on the external boundary under conditions of heat transfer by Newton's law on the boundary of the cavities
%J Sbornik. Mathematics
%D 1996
%P 869-880
%V 187
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/
%G en
%F SM_1996_187_6_a5
S. E. Pastukhova. On the nature of the temperature distribution in a perforated body with given values on the external boundary under conditions of heat transfer by Newton's law on the boundary of the cavities. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 869-880. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a5/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh sred, Izd-vo MGU, M., 1990 | Zbl

[3] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[4] Sukretnyi V. I., “Usrednenie kraevykh zadach dlya ellipticheskikh uravnenii v perforirovannykh oblastyakh”, UMN, 38:6 (1983), 125–126 | MR | Zbl

[5] Sukretnyi V. I., “Asimptoticheskoe razlozhenie reshenii tretei kraevoi zadachi dlya ellipticheskikh uravnenii vtorogo poryadka v perforirovannykh oblastyakh”, UMN, 39:4 (1984), 120–121 | MR

[6] Sukretnyi V. I., O zadache statsionarnoi teploprovodnosti v perforirovannykh oblastyakh, Preprint 84.48, Institut matematiki AN USSR, Kiev, 1984 | MR

[7] Pastukhova S. E., “Metod kompensirovannoi kompaktnosti Tartara v usrednenii spektra smeshannoi zadachi dlya ellipticheskogo uravneniya v perforirovannoi oblasti s tretim kraevym usloviem”, Matem. sb., 186:5 (1995), 127–144 | MR | Zbl

[8] Pastukhova S. E., “O pogreshnosti usredneniya dlya zadachi Steklova v perforirovannoi oblasti”, Differents. uravneniya, 31:6 (1995), 1042–1054 | MR