The group of diffeomorphisms of the~half-line, and random Cantor sets
Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 857-868

Voir la notice de l'article provenant de la source Math-Net.Ru

A certain one-parameter family of measures is constructed on the space of closed totally disconnected subsets of the half-line without isolated points. It is shown that these measures are quasi-invariant with respect to the group of smooth diffeomorphisms of the half-line, and the Radon–Nikodym derivatives are explicitly computed.
@article{SM_1996_187_6_a4,
     author = {Yu. A. Neretin},
     title = {The group of diffeomorphisms of the~half-line, and random {Cantor} sets},
     journal = {Sbornik. Mathematics},
     pages = {857--868},
     publisher = {mathdoc},
     volume = {187},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1996_187_6_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - The group of diffeomorphisms of the~half-line, and random Cantor sets
JO  - Sbornik. Mathematics
PY  - 1996
SP  - 857
EP  - 868
VL  - 187
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1996_187_6_a4/
LA  - en
ID  - SM_1996_187_6_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T The group of diffeomorphisms of the~half-line, and random Cantor sets
%J Sbornik. Mathematics
%D 1996
%P 857-868
%V 187
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1996_187_6_a4/
%G en
%F SM_1996_187_6_a4
Yu. A. Neretin. The group of diffeomorphisms of the~half-line, and random Cantor sets. Sbornik. Mathematics, Tome 187 (1996) no. 6, pp. 857-868. http://geodesic.mathdoc.fr/item/SM_1996_187_6_a4/